538 research outputs found

    The boiling suppression of liquid nitrogen

    Full text link
    When He gas is injected from room temperature into boiling liquid N2_{2}, boiling is suppressed, leaving liquid surface flat like a mirror. Although the qualitative explanation for this phenomenon is known [Minkoff G J \textit{et al}. Nature 1957;180(4599):1413-4.], it has not been studied quantitatively and comprehensively yet. In this report, we made careful simultaneous measurements of temperature and weight variation of the liquid. The results clearly indicate that the boiling suppression is caused by cooling of the liquid with "internal evaporation" of N2_{2} into the He bubbles.Comment: 14 pages, 7 figure

    Determination of the mosaic angle distribution of Grafoil platelets using continuous-wave NMR spectra

    Full text link
    We described details of a method to estimate with good accuracy the mosaic angle distributions of microcrystallites (platelets) in exfoliated graphite like Grafoil which is commonly used as an adsorption substrate for helium thin films. The method is based on analysis of resonance field shifts in continuous-wave (CW) NMR spectra of 3^{3}He ferromagnetic monolayers making use of the large nuclear polarization of the adsorbate itself. The mosaic angle distribution of a Grafoil substrate analyzed in this way can be well fitted to a gaussian form with a 27.5±2.527.5\pm2.5 deg spread. This distribution is quite different from the previous estimation based on neutron scattering data which showed an unrealistically large isotropic powder-like component.Comment: 6 pages, 5 figure

    Valence and Na content dependences of superconductivity in NaxCoO2.yH2O

    Full text link
    Various samples of sodium cobalt oxyhydrate with relatively large amounts of Na+^{+} ions were synthesized by a modified soft-chemical process in which a NaOH aqueous solution was added in the final step of the procedure. From these samples, a superconducting phase diagram was determined for a section of a cobalt valence of \sim+3.48, which was compared with a previously obtained one of \sim+3.40. The superconductivity was significantly affected by the isovalent exchanger of Na+^{+} and H3_{3}O+^{+}, rather than by variation of Co valence, suggesting the presence of multiple kinds of Fermi surface. Furthermore, the high-field magnetic susceptibility measurements for one sample up to 30 T indicated an upper critical field much higher than the Pauli limit supporting the validity of the spin-triplet pairing mechanism.Comment: 4 figures and 1 tabl

    Single-ion anisotropy in Haldane chains and form factor of the O(3) nonlinear sigma model

    Full text link
    We consider spin-1 Haldane chains with single-ion anisotropy, which exists in known Haldane chain materials. We develop a perturbation theory in terms of anisotropy, where magnon-magnon interaction is important even in the low temperature limit. The exact two-particle form factor in the O(3) nonlinear sigma model leads to quantitative predictions on several dynamical properties including dynamical structure factor and electron spin resonance frequency shift. These agree very well with numerical results, and with experimental data on the Haldane chain material Ni(C5_5H14_{14}N2_2)2_2N3_3(PF6_6)

    Finite element analysis of magnetic circuits composed of axisymmetric and rectangular regions

    Get PDF
    A new approximate method is developed for calculating three-dimensional magnetic fields in magnetic circuits composed of connected axisymmetric and rectangular regions. Using this new method, fairly accurate solutions can be obtained when the leakage flux from the magnetic circuit is small. In this paper, the new method is explained and then the usefulness of the technique is clarified by comparing calculated and measured flux densities.</p

    Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars

    Full text link
    We investigate the stability of differentially rotating proto-neutron stars (PNSs) with a toroidal magnetic field. Stability criteria for nonaxisymmetric MHD instabilities are derived using a local linear analysis. PNSs are expected to have much stronger radial shear in the rotation velocity compared to normal stars. We find that nonaxisymmetric magnetorotational instability (NMRI) with a large azimuthal wavenumber mm is dominant over the kink mode (m=1m=1) in differentially rotating PNSs. The growth rate of the NMRI is of the order of the angular velocity Ω\Omega which is faster than that of the kink-type instability by several orders of magnitude. The stability criteria are analogous to those of the axisymmetric magnetorotational instability with a poloidal field, although the effects of leptonic gradients are considered in our analysis. The NMRI can grow even in convectively stable layers if the wavevectors of unstable modes are parallel to the restoring force by the Brunt-V\"ais\"al\"a oscillation. The nonlinear evolution of NMRI could amplify the magnetic fields and drive MHD turbulence in PNSs, which may lead to enhancement of the neutrino luminosity.Comment: 24pages, 7figures, Accepted for publication in the Astrophysical Journal (December 12, 2005

    Evidence for a Self-Bound Liquid State and the Commensurate-Incommensurate Coexistence in 2D 3^3He on Graphite

    Full text link
    We made heat-capacity measurements of two dimensional (2D) 3^3He adsorbed on graphite preplated with monolayer 4^4He in a wide temperature range (0.1 T\leq T \leq 80 mK) at densities higher than that for the 4/7 phase (= 6.8 nm2^{-2}). In the density range of 6.8 ρ\leq \rho \leq 8.1 nm2^{-2}, the 4/7 phase is stable against additional 3^3He atoms up to 20% and they are promoted into the third layer. We found evidence that such promoted atoms form a self-bound 2D Fermi liquid with an approximate density of 1 nm2^{-2} from the measured density dependence of the γ\gamma-coefficient of heat capacity. We also show evidence for the first-order transition between the commensurate 4/7 phase and the ferromagnetic incommensurate phase in the second layer in the density range of 8.1 ρ\leq \rho \leq 9.5 nm2^{-2}.Comment: 6 pages, 4 figure

    Numerical analysis of antenna by a surface patch modeling

    Get PDF
    A cylindrical dipole antenna is numerically analyzed by the moment method. The surface of the antenna is approximated by triangular patches and the electric field integral equation is used for direct calculation of the surface current distribution. Therefore, the cylinder antenna can be treated in open or closed boundary form. The current expansion functions and the testing functions of the electric field boundary condition are of the triangular type. The surface integrals are numerically solved by a 33-point Gaussian quadrature approximation. The current distribution on a flat plate illuminated by a plane wave and the input admittance of a hollow cylindrical dipole as the near field quantities has been investigated. The convergence of the input admittance against the number of the triangular patches is presented, and the admittance solution is compared with the thin-wire approximation and theoretical results. Finally the CPU time and memory storage size for different numbers of patches are presented. Rapid admittance convergence and few required unknowns per square wavelength are the advantages of surface patch modeling </p

    Anti-self-dual Maxwell solutions on hyperk\"ahler manifold and N=2 supersymmetric Ashtekar gravity

    Full text link
    Anti-self-dual (ASD) Maxwell solutions on 4-dimensional hyperk\"ahler manifolds are constructed. The N=2 supersymmetric half-flat equations are derived in the context of the Ashtekar formulation of N=2 supergravity. These equations show that the ASD Maxwell solutions have a direct connection with the solutions of the reduced N=2 supersymmetric ASD Yang-Mills equations with a special choice of gauge group. Two examples of the Maxwell solutions are presented.Comment: 9 page
    corecore