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FINITE  ELEMENT  ANALYSIS OF MAGNETIC  CIRCUITS  COMPOSED  OF 
AXISYMMETRIC  AND  RECTANGULAR  REGIONS 

T.Nakata,  N.Takahashi,  Y.Kawase,  H.Funakoshi and S.Ito* 

ABSTRACT 

A new approximate  method is developed  for 
calculating  three-dimensional  magnetic  fields  in 
magnetic  circuits  composed  of  connected  axisymmetric 
and  rectangular regions.  Using  this  new  method,  fairly 
accurate  solutions  can be obtained  when  the  leakage 
flux  from  the  magnetic  circuit is small. 

In  this paper, the  new method is explained  and 
then the usefulness  of  the  technique is clarified by 
comparing  calculated  and  measured  flux  densities. 

1. INTRODUCTION -._._I__ I__.-I_ 

Magnetic  circuits are often  composed  of  regions  of 
axisymmetric  shape and others of  rectangular  shape. 
Though  three-dimensional  analysis is required  for  such 
magnetic  circuits,  the  magnetic  fields  have  often  been 
analyzed  by the axisymmetric or the two-dimensional. 
method  to  reduce  computer  storage  and  computing  time. 

A  more  accurate  approximate  method  for  analyzing 
such  magnetic  circuits  has  been  developed by modifying 
and  combining  the  axisymmetric  and  the  two-dimensional 
finite  element methods. 

2. METHOD OF ANALYSIS -. ..--_I _____ 

In this  Section,  first  the  new  method  is  outlined. 
Next,  a  new  vector  potential is introduced  in  order 
to satisfy  the  continuity  of  flux  on  the  boundary 
between the axisymmetric  and the rectangular regions. 
Finally,  the  condition  for  the  continuity  of  flux is 
derived,  and  the  Rayleigh-Ritz  equations are given. 

2.1 Outline of  the Method 
-----l-l_ I___..-- 

The  new method  can be illustrated  by  an  example 
shown  in Fig.1. Figure l(a) shows the  magnetic 
circuit,  composed of a  limb  with  circular  section and a 
yoke  with  rectangular section. A  coil is wound  around 
the limb.  Figure  l(b)  shows  the  cross-section  of  the 
region to be  analyzed. 

Our  method is derived by combining  and  modifying 
the usual axisymmetric  and  the  two-dimensional  finite 
element  methods,  in  order to calculate 
three-dimensional  magnetic  fields  within  almost  the 
same computing  time  and  program  size as the 
two-dimensional or the  axisymmetric  finite  element 
method.  An axisymmetric  finite  element  method  is 
applied to the  region  a-b-c-d-a,  where  the  flux 
distribution is assumed to be  axisymmetric,  and  a 
two-dimensional  finite  element  method is applied  to  the 
region  d-c-e-f-d,  where  the  flux  distribution is 
assumed to be  two-dimensional.  If  both  methods are 
simply  combined, the flux  is  not  always  continuous  on 
the  boundary  between  two  regions.  A  new  vector 
potential is introduced to satisfy  the  condition  of 
continuity  of flux. If the  leakage flux from the 
magnetic  circuit is small  due  to  the high  permeability 
of  the  steel,  fairly  accurate  solutions  can be obtained 
by  the  new  method. 
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Fig.1 Analyzed  model. 

If  the  vector  potential  on the boundary  b-a-f-e  in 
Fig.l(b) is assumed to be  zero,  the  vector  potential 
AR defined by the  following  equation  corresponds to  the 
flux  per  radian  in  the  limb t11. 

A R  = r A e ,  (1) 

where A g . i s  the  circumferential  component  of  the  vector 
potential  in the axisymmetric  field  and r is the 
radius. The total  flux t~~~ within  the  radius  R in the 
limb  can  be  written,  using  the  vector  potential AR, by 
the  following  equation [ l l ,  

* r t =  2 EAR . ( 2 )  

The vector  potential Az in  the  two-dimensional 
field  corresponds to the  flux  in  the  yoke per unit 
length  in the z-direction. The total  flux Q x y  in  the 
yoke  can be written,  using  the  vector  potential Az, by 

* M Y =  t o A z ,  (3) 

where t o  is  the  thickness of the yoke. The following 
relationship  between Q r z  and px,, can  be  obtained  from 
the  continuity  of  flux, 

c P r a / 2 = 6 x ~ .  ( 4 )  

By substituting ( 2 )  and (3) into ( 4 ) ,  the  following 
equation  can  be  obtained, 

n A R  =toAz, ( 5 )  

When AR and Az are used  for the analysis of the 
respective  regions, AR should be  equal to  Az  on the 
boundary.  However,  Eq.(5) indicates  that  the 
continuity  of  flux  cannot  be  satisfied,  when Am is  set 
to be  equal to Az. 

Therefore,a new  vector  potential  A  which 
corresponds to the  flux  in  a  thickness  t in the 
z-direction, is introduced  in  the  rectangular 
regionf21.  A is defined by the equation, 
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where Bx and By  are  the x- and  y-components of the flux 
density in the  rectangular  region,  respectively. The 
total  flux $.xy in the yoke  can  be  written,  using  the 
new vector  potential  A,  by 

$ x y = A  t o / t  . ( 7 )  

From Eqs.(2), (4) and (7), the  following  relationship 
is  obtained: 

n’AR = A t o / t  . (8) 

As AR and  A  denote  the  fluxes in adjoining  magnetic 
regions, AR and  A  should be equal on the  boundary 9-d 
between  the two regions.  Therefore, the. thickness  t 
which  satisfies the continuity of flux  can  be  derived 
from (8) as follows: 

t = t o / n  . ( 9 )  

From Eqs.(7) and (9 ) ,  Q x y  is finally  written as 

$ x y =  P A .  

Continuity  of  flux 
c-g in the air. AR and 
c-g . 
_.___..____I. 2.3 Formulations 

Poisson’s equation 
field can be  written as 

(1.0) 

is also assumed on the  boundary 
A are equal on the  boundary 

for  the  axisymmetric  magnetic 
follows [ l l :  

where v and J o e  denote  the  reluctivity  and  the 
circumferential  component  of  the  current  density, 
respectively. 

Using  the new vector  potential A, Poisson’s 
equation  for  the  two-dimensional  magnetic  field  can be 
written as follows: 

where, Joz is the z-component of the  current  density. 

2.4 Rayleigh-Ritz  Equations __...____._._.______.-I_- 

The  Rayleigh-Ritz  equations  can  be  obtained by 
minimizing  the  total  energy X as follows: 

where Ai  is  the  vector  potential at node i, and  n is 
the number of nodes at which  the  vector  potentials  are 
unknown.  Ai  corresponds  to AR in the  axisymmetric 
region’and to A in the  rectangular  region. x is given 
by 

X =  X,,+ X x y  (14) 

X r z  is  the  energy  corresponding to Eq.(ll) and is 
given by 

where Srz denotes  the  axisymmetric  region. x, is  the  energy  corresponding to Eq. (121, in 
which  the  thickness  t  is  replaced by  Eq.(9), and  is 
given by 

where  Sxy denotes the  rectangular  region. The flux 
densities Brz and  Bxy in the  respective  regions  can  be 
represented  by 

2 n a A  2 Bxy= ( - - ) + (- dA )* 
t o  a y  t o  a x  . 

_____.__ 3. FACTORS AFFECTING THE ACCURACY 

The  effects of the  position of the  boundary 
between  the  axisymmetric  and  the  rectangular  regions, 
and  the  shape of the  magnetic  circuit on the  accuracy 
of the  calculated  results  are  investigated. 

3.1 Position of the  boundary __ - __ - ___ -___I - 
The flux  distribution  in  the  magnetic  circuit 

shown in Fig.1 has been  analyzed. The radius of the 
limb and  radius  of  the  coil are 19 and 39(mm), 
respectively. The thickness  of  the  yoke is 80(mm). 
The  boundary  positions  investigated  are  denoted  by  the 
broken  lines  in Fig.2. 

Figure 3 shows the  effects of the  position R of 
the  boundary on the average  flux  densities  Bbh  and  Bie 
of the  limb  and  the yoke derlotcd in Fig.2. The  ampere 
turn  Ixn  of  the coil is 0.25~850 and lx850(AT). The 
solid  lines denote the  calculated  results  and  the 
broken  lines denote the measured  ones.  The  shape  of 
the  yoke  insidelthe  boundary is different  from  the  true 
one.  As  the  percentage of such  a  part  of  the  yoke is 
small compared  with  the  total  magnetic  circuit,  the 
accuracies  of  Bbh  and Bie are not affected  much by the 
position R. 

position R=O voke 

1-4 
Fig.2 Position of the  boundary. 

position R(mm) position R (mm) 

(a) limb (b) yoke 
Fig.3 Effects of the  position  of  the  boundary 

on  the  flux  densities. 

Figure 4 shows the x-component Bx  of the  flux 
density at the  point  which is x(mm)  from  the  center 
line as denoted ,in  Fig.l(b).  Bx is increased  with x 
during x<l6(mm). When x,l6(mm), the  increase of the 
cross-sectional  area  becomes  larger  than  that of the 
amount of the flux. Therefore, Bx has the  peak  value 
near x=16(mm). In this  model,  the  cross-sectional 
areas of the  axisymmetric  and  rectangular  regions on 
the  boundary  are  equal  to  each other when  R  is 
25.46(mm). The  assumed  sections of the  limb at the 
positions  R=19, 25.46,  60(mm), for  examples,  are  shown 
in Fig.5. Although  the  continuity  of  the  flux at the 
boundary  is  considered  as  denoted  in 2.2, the  flux 
density  Bx is not continuous  at  the  boundary  when R is 
not equal  to 25.46(mm) as  shown  in Fig.4. Therefore, 
the  boundary  should  be set on the  position  where 
respective  cross-sectional areas of the  boundaries of 
both  regions  are  the  same. 
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different  from  the  experimental  ones.  This is because 
the new method  can  take  account of the cross-sectional 
areas of the  limb  and the yoke; 

0- 19 39 60 
101 

X (mm) 

(b) R 2 3 9  

Fig.4 Effects of the  position  R  on 
the  flux  distribution. 

axisymmetric region 

(a) R = 1 9  (b)  R=25.46  (c) R=60 

Fig.5 Assumed sections of theaxisymmetric and 
rectangular  regions at each  position of 
the  boundary. 

3.2 Shape of the  magnetic  circuit 
-. ._ _- -. .- . . . .. - .- - 

The dimension  of  the  magnetic  circuit  shown  in 
Fig. 1 is determined  by  the  radius  r  of  the  limb,  and 
the  length L, the  width D, the  thickness t o  and  the 
height H of the yoke. When,  the  conventional 
two-dimensional  method is applied to the  whole  region, 
the  error  due  to  the  radius of the  limb is 
considerable,  because  the  whole  region  is  assumed to be 
rectangular. If the  magnetic  field  of  this  magnetic 
circuit  is  analyzed  using  the axisymetric or the 
two-dimensional method, there  are  some  errors in the 
calculated  flux densities because  such  a  method assumes 
that  the  whole  region  is  axisymmetric  or  rectangular. 
The error  of  the  cross-sectional  area  of  the  yoke is 
mainly due to  the  radius  r  of  the  limb,  and  the  length 
L and  the  thickness t o  of the  yoke.  Therefore,  the 
effects  of r, L and t o  on the  flux  densities  Bbh  and 
Bie  are  analyzed.  The  current in the  coil  is 1(A), and 
the boundary is at R=25.46(m). 

Figures 6, 7 and 8 show  the  effects  of  the radius 
r of the  limb  and  the  length L and  the  thickness t o  of 
the  yoke on Bbh  and  Bie.  Results  using  the nc?w n i c C h o d  
are  denoted  by "A". "0" and " x "  denote  flux  densities 
calculated  using the axisymmetric  and  the 
two-dimensional  method,  respectively.  Experimental 
results are  denoted by " 0 " .  The results  calculated 
using  the new method  show  good  agreement  with  the 
experimental ones for  almost  every  r, L and t o .  The 
results  calculated  using  the  axisymmetric  and  the 
two-dimensional  methods,  however, are very  much 

E 21- 

radius  r (mm) radius r (mm) 

(a) limb  (b)  yoke 

A : new  method 
0 : axisymmetric  method  calculated 
X : two-dimensional  method 
0 : measured 

Fig.6 Effects  of  the radius r of the  limb 
on the  flux  densities (I=lA). 

length L (mm) 
(b)  yoke 

Fig.7  Effects  of  the  length L of the  yoke 
on the  flux  densities (I=lA). 

W 

0 

i r - - - - - - -  

t 
200 

thickness to (mm)  thickness to (mm) 
(a)  limb ( b )  yoke 

Fig.8 Effccts of the Lhi.ckrlc?ss to of the  yokc 
on the  flux,  densities (I=lA). 
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4-.- APPLICATION TO A  MAGNETIZER 

Figure 9 shows one quadrant of an analyzed 
magnetizer. The permanent  magnet to be  magnetized  is 
set  between the two  pole  pieces.  The  pole  piece  and 
the yoke are  made  of steel. The number  of  turns  of  the 
coil  is 840. 

The axisymmetric  finite  element  method  is  applied 
to  the  region  b-a-f-e-d-c-b,  and the two-dimensional 
finite  element  method is applied  to  the  region 
c-d-e-f-g-h-c. The boundary  e-f  is chosen as the 
position  where  the  cross-sectional  areas of the 
boundaries  of  the  axisymmetric  and  the  rectangular 
regions are the same. 

Figure 10 shows the  flux  distributions.  The  solid 
line  denofes  the  flux  line in the  axisymmetric  region 
and the broken  line in the rectangular  region. 

Figure 11 shows the  calculated  and  the  measured 
flux  densities. R j  and  Rih denote the  flux dr?nr;jty at 
the  point j and  the average flux  density on the line 
i-h in Fig.9.  As the leakage flux  is  distributed 
axisymmetrically,  the  results  calculated  using  the new 
method show good  agreement  with  the  experimental  ones. 

The new method  enables u s  to analyze  magnetic 
circuits  composed  of  connected  axisymmetric  and 
rectangular  regions  requiring only a  small increase of 
computer storage and  computing  time.  The  accuracy  of 
the  method depends on the  position  of  the  boundary 
between the two regions,  the  permeability, etc. A  more 
detailed  investigation  of  the  accuracy  will  be 
reported  later. 

It  is also possible  to  analyze  the  flux 
distributions in magnetic  circuits  composed of more 
than two kinds of  rectangular  regions  with  different 
thickness [4]. The  method  will be improved so that 
magnetic  circuits  with  more  than  two kinds of 
axisymmetric regions can be analyzed. 

pole  piece  yoke 

a 

?+ U 

Boundary  conditions 

b-h  :Neumann  boundary 
b-a-g-h:uirichlet  boundary 

Fig.9  Model  of  a  magnetizer. 

O . " " " ' *  20 40 60 
exciting  current I (A) 

(a)  flux  density Bj at  the  pole tip 

exciting  current  I ( A )  

(b) flux  density  Bih 

-- } calculated 2 } measured 

Fig.11 Excitation  characteristics. 
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Fig.10  Flux  distribution 
(1=20A, G=lOmm). 


