9 research outputs found

    Low-energy and very-low energy total cross sections for electron collisions with N

    No full text
    Absolute grand total cross sections for electron scattering from N2 are obtained in the energy range from 20 eV down to 5 meV with very narrow electron energy width of 9 meV using the threshold-photoelectron source. Total cross sections obtained in the present study are compared with the previous experimentally obtained results. At the very-low energy region below 50 meV, the present total cross sections are somewhat smaller than those reported by the Aarhus group [S.V. Hoffmann et al., Rev. Sci. Instrum. 73, 4157 (2002)], which has been the only experimental work that provided the total cross sections in the very-low energy region. The energy positions of the peaks in the total cross sections due to the 2Πg shape resonance are obtained with higher accuracy, due to the improved uncertainty of the energy position in the present measurement compared to the previous works. The resonance structure in the total cross sections due to the Feshbach resonances of N2 at around 11.5 eV are also observed. Analysis of the resonant structure was carried out in order to determine the values of resonance width of Feshbach resonances of N2

    Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis

    Get PDF
    Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution

    Correlation of Arterial CO2 and Respiratory Impedance Values among Subjects with COPD

    No full text
    Chronic obstructive pulmonary disease (COPD) is a respiratory illness characterized by airflow limitation and chronic respiratory symptoms with a global prevalence estimated to be more than 10% in 2010 and still on the rise. Furthermore, hypercapnic subject COPD leads to an increased risk of mortality, morbidity, and poor QoL (quality of life) than normocapnic subjects. Series of studies showed the usefulness of the forced oscillation technique (FOT) to measure small airway closure. Traditional findings suggested that hypercapnia may not be the main treating targets, but recent findings suggested that blood stream CO2 may lead to a worse outcome. This study aimed to seek the relationship between CO2 and small airway closure by using FOT. Subjects with COPD (n = 124; hypercapnia 22 and normocapnia 102) were analyzed for all pulmonary function values, FOT values, and arterial blood gas analysis. Student’s t-test, Spearman rank correlation, and multi linear regression analysis were used to analyze the data. COPD subjects with hypercapnia showed a significant increase in R5, R20, Fres, and ALX values, and a greater decrease in X5 value than normocapnic patients. Also, multiple linear regression analysis showed R5 was associated with hypercapnia. Hypercapnia may account for airway closure among subjects with COPD and this result suggests treating hypercapnia may lead to better outcomes for such a subject group

    GENERAL SESSION

    No full text
    corecore