16 research outputs found

    Characterization of hippocampal theta rhythm in wild-type mice and glutamate receptor subunit delta2 mutant mice during eyeblink conditioning with a short trace interval.

    Get PDF
    We have shown that glutamate receptor subunit delta2 (GluRdelta2) null mutant mice, which have serious morphological and functional deficiencies in the cerebellar cortex, are severely impaired in delay eyeblink conditioning but not in trace eyeblink conditioning, even with a 0-trace interval. Such 0-trace conditioning does not depend critically on the hippocampus in wild-type mice, but it does in GluRdelta2 mutant mice. Here we examined the hippocampal electroencephalogram (EEG) during 0-trace conditioning in GluRdelta2 mutant and wild-type mice. During the apparatus habituation sessions, the total hippocampal theta activity (4-12 Hz) of GluRdelta2 mutant mice was less than that of wild-type mice. Activity in the higher frequency band (8-12 Hz, type 1) in GluRdelta2 mutant mice was significantly less than it was in wild-type mice, but activity in the lower frequency band (4-8 Hz, type 2) was not. As learning proceeded during the acquisition sessions, the total theta activity decreased in many of the wild-type mice, while this phenomenon was less prominent in GluRdelta2 mutant mice. Further analysis showed that the type 1 activity in wild-type mice increased in the early sessions and then decreased, while that in GluRdelta2 mutant mice did not change. Type 2 activity tended to decrease in both types of mice as the conditioning proceeded. These results indicate that the distribution of hippocampal EEG frequency and its properties during conditioning are different between wild-type and GluRdelta2 mutant mice, suggesting that the cerebellar cortical dysfunction may cause an alteration in the electrophysiological characteristics of the hippocampus

    N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.

    Get PDF
    Classical eyeblink conditioning has been known to depend critically on the cerebellum. Apparently consistent with this, glutamate receptor subunit delta2 null mutant mice, which have serious morphological and functional deficiencies in the cerebellar cortex, are severely impaired in delay paradigm. However, these mutant mice successfully learn in trace paradigm, even in \u270-trace paradigm,\u27 in which the unconditioned stimulus starts just after the conditioned stimulus terminates. Our previous studies revealed that the hippocampus and the muscarinic acetylcholine receptors play crucial roles in 0-trace paradigm in glutamate receptor subunit delta2 null mutant mice unlike in wild-type mice, suggesting a large contribution of the forebrain to 0-trace conditioning in this type of mutant mice. In the present study, we investigated the role of N-methyl-D-aspartate receptors in 0-trace eyeblink conditioning in glutamate receptor subunit delta2 null mutant mice. Mice were injected intraperitoneally with the noncompetitive N-methyl-d-aspartate receptor antagonist (+)MK-801 (0.1mg/kg) or saline, and conditioned with 350-ms tone conditioned stimulus followed by 100-ms periorbital shock unconditioned stimulus. Glutamate receptor subunit delta2 null mutant mice that received (+)MK-801 injection exhibited a severe impairment in acquisition of the conditioned response, compared with the saline-injected glutamate receptor subunit delta2 null mutant mice. In contrast, wild-type mice were not impaired in acquisition of 0-trace conditioned response by (+)MK-801 injection. After the injection solution was changed from (+)MK-801 to saline, glutamate receptor subunit delta2 null mutant mice showed a rapid and partial recovery of performance of the conditioned response. On the other hand, when the injection solution was changed from saline to (+)MK-801, glutamate receptor subunit delta2 null mutant mice showed a marked impairment in expression of the pre-acquired conditioned response, whereas impairment of the expression was small in wild-type mice. Injection of (+)MK-801 had no significant effects on spontaneous eyeblink frequency or startle eyeblink frequency to the tone conditioned stimulus in either glutamate receptor subunit delta2 null mutant mice or wild-type mice. These results suggest that N-methyl-D-aspartate receptors play critical roles both in acquisition and expression of the conditioned response in 0-trace eyeblink conditioning in glutamate receptor subunit delta2 null mutant mice

    The hippocampus plays an important role in eyeblink conditioning with a short trace interval in glutamate receptor subunit delta 2 mutant mice.

    Get PDF
    Mutant mice lacking the glutamate receptor subunit delta2 exhibit changes in the structure and function of the cerebellar cortex. The most prominent functional feature is a deficiency in the long-term depression (LTD) at parallel fiber-Purkinje cell synapses. These mutant mice exhibit severe impairment during delay eyeblink conditioning but learn normally during trace eyeblink conditioning without the cerebellar LTD, even with a 0 trace interval. We investigated the hippocampal contribution to this cerebellar LTD-independent "0 trace interval" learning. The mutant mice whose dorsal hippocampi were aspirated exhibited severe impairment in learning, whereas those that received post-training hippocampal lesions retained the memory. The wild-type mice showed no impairment in either case. These results suggest that the hippocampal component of the eyeblink conditioning task becomes dominant when cerebellar LTD is impaired

    須田修氏遺品寄贈の記録

    Get PDF
    群馬県出身で明治41年卒業の須田修氏の遺品が麻布大学いのちの博物館に寄贈された。寄贈した金子氏と博物館の学芸員の高槻が遺品の価値や背景についておこなった文通を紹介した。遺品には当時の獣医の治療具などや証書類があった。また修氏の父が群馬県に提出した牧場の建設願いなども紹介した。Mrs. Michiko Kaneko, granddaughter of Dr. Shu Suda, who graduated from the original Azabu University in 1908, donated his belongings in June, 2016 to the Life Museum of Azabu University. This record introduces the correspondence between Mrs. Kaneko and Dr. Seiki Takatsuki, the senior curator of the museum, in which the authenticity and the background of the mementoes are discussed. The mementoes include some old veterinary instruments, classic books, and certified documents. A proposal to Gunma Prefecture by Dr. Suda’s father to establish a new pasturing company in 1878, and Dr. Suda’s favorite book “Horse’s Dream” are also included. The book describes a horse’s opinion to oppose the movement for horse breeding for military objectives

    LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance

    Get PDF
    Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance. © 2014 by the American Diabetes Association

    Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission
    corecore