49 research outputs found

    Use of a micromanipulator system (NeuRobot) in endoscopic neurosurgery

    Get PDF
    NeuRobot, a micromanipulator system with a rigid neuroendoscope and three micromanipulators, was developed for less invasive and telecontrolled neurosurgery. This system can be used to perform sophisticated surgical procedures through a small, 10-mm-diameter, window. The present study was performed to evaluate the feasibility of using NeuRobot in neuroendoscopy. Four different intraventricular neurosurgical procedures were simulated in three fixed cadaver heads using NeuRobot: (1) fenestration of the floor of the third ventricle; (2) fenestration of the septum pellucidum; (3) biopsy of the thalamus; and (4) biopsy of the choroid plexus of the lateral ventricle. Each procedure required less than 2 min, and all procedures were performed accurately. After these surgical simulations, a third ventriculostomy was carried out safely and adequately in a patient with obstructive hydrocephalus due to a midbrain venous angioma. Our results confirmed that NeuRobot is applicable to lesions in which conventional endoscopic neurosurgery is indicated. Furthermore, NeuRobot can perform more complex surgical procedures than a conventional neuroendoscope because of its maneuverability and stability. NeuRobot will become a useful neurosurgical tool for dealing with lesions that are difficult to treat by conventional neuroendoscopic surgery.ArticleJOURNAL OF CLINICAL NEUROSCIENCE. 19(11):1553-1557 (2012)journal articl

    Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome

    Get PDF
    Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/human​n. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies.National Institutes of Health (U.S.) (U54HG004968
    corecore