27 research outputs found

    Selective peroxisome proliferator-activated receptor-Ī± modulator K-877 efficiently activates the peroxisome proliferator-activated receptor-Ī± pathway and improves lipid metabolism in mice

    Get PDF
    Aims/IntroductionPeroxisome proliferator-activated receptor-Ī± (PPARĪ±) is a therapeutic target for hyperlipidemia. K-877 is a new selective PPARĪ± modulator (SPPARMĪ±) that activates PPARĪ± transcriptional activity. The aim of the present study was to assess the effects of K-877 on lipid metabolism in vitro and in vivo compared with those of classical PPARĪ± agonists.Materials and MethodsTo compare the effects of K-877 on PPARĪ± transcriptional activity with those of the classical PPARĪ± agonists Wy14643 (Wy) and fenofibrate (Feno), the cell-based PPARĪ± transactivation luciferase assay was carried out. WT and Pparaāˆ’/āˆ’ mice were fed with a moderate-fat (MF) diet for 6 days, and methionineā€“choline-deficient (MCD) diet for 4 weeks containing Feno or K-877.ResultsIn luciferase assays, K-877 activated PPARĪ± transcriptional activity more efficiently than the classical PPARĪ± agonists Feno and Wy. After being fed MF diet containing 0.001% K-877 or 0.2% Feno for 6 days, mice in the K-877 group showed significant increases in the expression of Ppara and its target genes, leading to marked reductions in plasma triglyceride levels compared with those observed in Feno-treated animals. These K-877 effects were blunted in Pparaāˆ’/āˆ’ mice, confirming that K-877 activates PPARĪ±. In further experiments, K-877 (0.00025%) and Feno (0.1%) equally improved the pathology of MCD diet-induced non-alcoholic fatty liver disease, with increased expression of hepatic fatty acid oxidation genes.ConclusionsThe present data show that K-877 is an attractive PPARĪ±-modulating drug and can efficiently reduce plasma triglyceride levels, thereby alleviating the dysregulation of lipid metabolism

    Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism

    Get PDF
    Brown adipose tissue (BAT) is an attractive therapeutic target for treating obesity and metabolic diseases. Octacosanol is the main component of policosanol, a mixture of very long chain aliphatic alcohols obtained from plants. The current study aimed to investigate the effect of octacosanol and policosanol on high-fat diet (HFD)-induced obesity. Mice were fed on chow, or HFD, with or without octacosanol or policosanol treatment for four weeks. HFD-fed mice showed significantly higher body weight and body fat compared with chow-fed mice. However, mice fed on HFD treated with octacosanol or policosanol (HFDo/p) showed lower body weight gain, body fat gain, insulin resistance and hepatic lipid content. Lower body fat gain after octacosanol or policosanol was associated with increased BAT activity, reduced expression of genes involved in lipogenesis and cholesterol uptake in the liver, and amelioration of white adipose tissue (WAT) inflammation. Moreover, octacosanol and policosanol significantly increased the expression of Ffar4, a gene encoding polyunsaturated fatty acid receptor, which activates BAT thermogenesis. Together, these results suggest that octacosanol and policosanol ameliorate diet-induced obesity and metabolic disorders by increasing BAT activity and improving hepatic lipid metabolism. Thus, these lipids represent promising therapeutic targets for the prevention and treatment of obesity and obesity-related metabolic disorders

    Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice.

    No full text
    Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs-eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)-in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis

    Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression

    No full text
    Objective: The transcription factor cyclic AMP-responsive element-binding protein H (CREBH, encoded by Creb3l3) is highly expressed in the liver and small intestine. Hepatic CREBH contributes to glucose and triglyceride metabolism by regulating fibroblast growth factor 21 (Fgf21) expression. However, the intestinal CREBH function remains unknown. Methods: To investigate the influence of intestinal CREBH on cholesterol metabolism, we compared plasma, bile, fecal, and tissue cholesterol levels between wild-type (WT) mice and mice overexpressing active human CREBH mainly in the small intestine (CREBH Tg mice) under different dietary conditions. Results: Plasma cholesterol, hepatic lipid, and cholesterol crystal formation in the gallbladder were lower in CREBH Tg mice fed a lithogenic diet (LD) than in LD-fed WTs, while fecal cholesterol output was higher in the former. These results suggest that intestinal CREBH overexpression suppresses cholesterol absorption, leading to reduced plasma cholesterol, limited hepatic supply, and greater excretion. The expression of Niemannā€“Pick C1-like 1 (Npc1l1), a rate-limiting transporter mediating intestinal cholesterol absorption, was reduced in the small intestine of CREBH Tg mice. Adenosine triphosphate-binding cassette transporter A1 (Abca1), Abcg5/8, and scavenger receptor class B, member 1 (Srb1) expression levels were also reduced in CREBH Tg mice. Promoter assays revealed that CREBH directly regulates Npc1l1 expression. Conversely, CREBH null mice exhibited higher intestinal Npc1l1 expression, elevated plasma and hepatic cholesterol, and lower fecal output. Conclusion: Intestinal CREBH regulates dietary cholesterol flow from the small intestine by controlling the expression of multiple intestinal transporters. We propose that intestinal CREBH could be a therapeutic target for hypercholesterolemia. Keywords: CREBH, Npc1l1, Cholesterol, Intestin

    Attenuated hepatic inflammation and liver injury in mice fed AHF supplemented with EPA or DHA.

    No full text
    <p>Hematoxylin and eosin (H&E) staining of liver sections from representative mice from each treatment group (A), and plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (B). n = 11ā€“15 per group. ** p < 0.01, *** p < 0.001 versus chow group; # p < 0.05, ### p < 0.001 versus AHF group.</p
    corecore