1,121 research outputs found

    Protective Effects of Insulin in Cardiomyocytes Against Iron-mediated Cell Death

    Full text link
    When an acute myocardial infarction (MI) occurs, the heart becomes ischemic. Medical treatments such as stents have improved the recovery process after a MI, but there is still a high risk for heart failure. Due to the resulting intramyocardial hemorrhage, residual hemoglobin with excess iron compromises cardiomyocyte (CM) survival. Previous studies suggest that the magnitude of CM cell death is directly proportional to the level of adverse left ventricular (LV) remodeling. Mechanistic target of rapamycin (mTOR) is a key downstream signaling pathway that is sufficient for CM cell survival against iron and responds to insulin, a cardioprotective growth factor. However, the effect of insulin in excess iron-induced cell death in CMs is not well characterized. Using H9c2 cardiomyoblasts, originally derived from embryonic rat ventricle cells, the effects of insulin in CM cell survival against excess iron were examined. The cells were pre-treated with varying dosages of insulin before applying iron (III) citrate. Cell viability was assessed by Live/Dead Assay, in which live cells stain with calcein AM (green) and nuclei of dead cells stain with ethidium homodimer-1 (red). In comparison to the amount of cell death caused by iron alone, insulin decreased dead cell count substantially. The greatest concentration of 1”M of insulin with iron resulted in a statistical significance of p\u3c0.02 (n=3-4). The results indicate that insulin has the potential to mediate iron-induced CM death. Understanding the effect of insulin as a combatant of iron-induced cell death with an intramyocardial approach would lead to better therapeutic preventions of heart failure

    Evaluation of water film by reynolds' equation in deep drawing using high-pressured water jet

    Get PDF
    The authors had proposed a deep drawing method using high-pressured jet waters as lubricant. This method aimed to suppress the usage of oil or other chemical lubricants, which might require some additional processes for lubricant removal and become a nuisance in environment. The conditions had been determined through trial and error approach without knowing water behaviors as lubricant. As a result, some scars and dimples were observed on the surface of deformed cup. In the present paper, a numerical model was composed for the evaluation of the water behaviors as lubricant. Darcy-Weisbach equation was used for evaluation of pressure drop between nozzle exit and pump, while Reynolds' equation was used for the thin film of fluid between the die and blank. The data of blank deformation in FEM was considered for the determination of the thickness distribution of the fluid film. The characteristics of the water were evaluated by the composed numerical method, and the results were used for examination of lubrication characteristics in experiments

    Four-dimensional CP1+^1+ U(1) lattice gauge theory for 3D antiferromagnets: Phase structure, gauge bosons and spin liquid

    Full text link
    In this paper we study the lattice CP1^1 model in (3+1) dimensions coupled with a dynamical compact U(1) gauge field. This model is an effective field theory of the s=12s={1 \over 2} antiferromagnetic Heisenberg spin model in three spatial dimensions. By means of Monte Carlo simulations, we investigate its phase structure. There exist the Higgs, Coulomb and confinement phases, and the parameter regions of these phases are clarified. We also measure magnetization of O(3) spins, energy gap of spin excitations, and mass of gauge boson. Then we discuss the relationship between these three phases and magnetic properties of the high-TcT_{\rm c} cuprates, in particular the possibility of deconfined-spinon phase. Effect of dimer-like spin exchange coupling and ring-exchange coupling is also studied.Comment: 4pages, 10 figure

    "A Theory of Money with Market Places"

    Get PDF
    This paper considers an infinitely repeated economy in which divisible fiat money is used to trade goods. The economy has many market places. In each period, each agent chooses a market place, randomly meets someone who comes to the same market place, and they trade their goods when both agree to do so. There exist various classes of stationary equilibria. In some equilibria, all the agents visit the same market place, while in others, market places are specialized, i.e., only one type of good is traded in each active market place. In some equilibria, each good is traded at a single price, while in others, every good is traded at two different prices. Each class itself consists of equilibria with infinitely many price and welfare levels. However, it is shown that only efficient single price equilibria with specialized market places are evolutionarily stable. An inefficient equilibrium is upset by the mutants who visit a new market place to establish a more efficient trading pattern than before. An extension to the case with multiple currencies is also examined.

    Charmonium properties at finite temperature on quenched anisotropic lattices

    Full text link
    We study charmonium properties below and above TcT_c up to 1.8TcT_c, on quenched anisotropic lattices. Information of the spectral functions is extracted using the maximum entropy method and the constrained curve fitting. We also calculate the color singlet and averaged free energies and evaluate the charmonium spectrum with the potential model analysis. The relation between the lattice result of the spectral function analysis and the potential model is discussed.Comment: Lattice2004(non-zero), 3 pages, 4 figure

    Quarkonium at finite temperature

    Get PDF
    Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The ``wave function'' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.Comment: 8pages, 4figures, talk presented at Hard Probes 200

    Bayesian ranking and selection methods using hierarchical mixture models in microarray studies.

    Get PDF
    The main purpose of microarray studies is screening to identify differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing or ranking genes is a relevant statistical task in microarray studies. In this article, we develop 3 empirical Bayes methods for gene ranking on the basis of differential expression, using hierarchical mixture models. These methods are based on (i) minimizing mean squared errors of estimation for parameters, (ii) minimizing mean squared errors of estimation for ranks of parameters, and (iii) maximizing sensitivity in selecting prespecified numbers of differential genes, with the largest effect. Our methods incorporate the mixture structures of differential and nondifferential components in empirical Bayes models to allow information borrowing across differential genes, with separation from nuisance, nondifferential genes. The accuracy of our ranking methods is compared with that of conventional methods through simulation studies. An application to a clinical study for breast cancer is provided
    • 

    corecore