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Summary 

The main purpose of microarray studies is screening to identify differentially expressed 

genes as candidates for further investigation. Because of limited resources in this stage, 

prioritizing or ranking genes is a relevant statistical task in microarray studies. In this 

article, we develop three empirical Bayes methods for gene ranking on the basis of 

differential expression, using hierarchical mixture models. These methods are based on 

(1) minimizing mean squared errors of estimation for parameters, (2) minimizing mean 

squared errors of estimation for ranks of parameters, and (3) maximizing sensitivity in 

selecting prespecified numbers of differential genes, with the largest effect. Our methods 

incorporate the mixture structures of differential and non-differential components in 

empirical Bayes models to allow information borrowing across differential genes, with 

separation from nuisance, non-differential genes. The accuracy of our ranking methods is 

compared with that of conventional methods through simulation studies. An application 

to a clinical study for breast cancer is provided. 

 

Key words: empirical Bayes; gene expression; hierarchical mixture models; microarrays; 

ranking and selection.
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1. Introduction 

Recent developments in gene expression microarrays have enabled comprehensive 

screening of differentially expressed genes between different clinical subclasses. In 

genome-wide studies with microarrays, multiple testing is widely adopted, and 

statistically significant genes are reported as candidate genes for further investigation. 

Because of limited resources at this stage, prioritizing or ranking genes is needed. 

There are at least two criteria on which genes are ranked; one is related to the 

probability of non-differential expression, the other is to the magnitude of differential 

expression or the strength of association with the clinical outcome. An example of the 

former criterion is the local false discovery rate, which represents the posterior 

probability of non-differential expression of each gene (Efron and others, 2001; Efron, 

2008). A similar or related statistic using hierarchical Bayes models was derived and 

discussed by Newton and others (2004). The ranking based on the local false discovery 

rate is optimal for selecting differentially expressed genes from the viewpoint of 

Bayesian decision theory (Berger, 1985; McLachlan and others, 2006). 

For the latter criterion regarding magnitude of association, the fold change—which 

corresponds to the ratio or difference of mean expression levels between different clinical 

subtype classes—is commonly used (McLachlan and others, 2004; Guo and others, 

2006; Choe and others, 2005). Some authors have reported that gene ranking based on 

the fold change is reproducible (MAQC Consortium, 2006) and accurate for large 

absolute changes in gene expression (Witten and Tibshirani, in preparation
1
). However, 

the accuracy of gene ranking can be improved by ―borrowing strength‖ across genes. 

Specifically, the ranking of empirical Bayes estimators can be more accurate than that of 

                                                        
1
 Available on web: http://www-stat.stanford.edu/~tibs/ftp/FCTComparison.pdf. 
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conventional statistics such as maximum likelihood estimators (Laird and Louis, 1989). 

Laird and Louis (1989) and Shen and Louis (1998) discussed optimal ranking in 

empirical Bayes inference. Lin and others (2006) discussed various loss functions in 

Bayesian optimal ranking and selection rules, and derived optimal rules for selecting 

top-ranked features. 

An important feature of microarray data is that a large proportion of the genes 

investigated are non-differential. The incorporation of this feature of microarray data 

could allow for information-sharing across differential genes separated from nuisance, 

non-differential genes. In this article, we propose empirical Bayes methods for gene 

ranking on the basis of the strength of association under structural models that reflect this 

feature. Specifically, we assume a hierarchical mixture model with a two-stage compound 

sampling model, in which the second stage of the model is a mixture distribution of 

differential and non-differential components (Newton and Kendziorski, 2003; Lönnstedt 

and Speed, 2002; Gottardo and others, 2003). 

We present the framework of the hierarchical mixture modeling and its empirical 

Bayes inference in Section 2 and develop three ranking and selection rules in Section 3. 

In Section 4, we compare the proposed rules with conventional or other methods through 

simulations. We describe the application to a breast cancer clinical study in Section 5. 

Discussion is provided in Section 6.  
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2. Hierarchical mixture modeling 

The gene expression data considered here comprise normalized log ratios from two-color 

cDNA arrays or normalized log signals from oligonucleotide arrays (e.g., Affymetrix 

GeneChip). We consider a two-class comparison problem: a binary response—e.g., a 

poor prognosis and good prognosis, is compared on the basis of the expression levels of 

m candidate genes from n samples. For gene j, let θj be the parameter of interest, i.e., the 

difference in the mean expression level between the two classes (j = 1, …, m). As an 

estimator of θj, let Yj be the fold change, which is the difference in the sample mean 

expression level obtained from n samples (Guo and others, 2006; Choe and others, 2005). 

We consider a two-stage model with i.i.d. sampling from a three-component mixture prior  

and from a normal gene-specific sampling model: 

Yj | θj ~ N(θj, σj
2
)      (2.1) 

θj ~ π0 δ(θ) +π1 g1(θ |ξ1) + π2 g2(θ |ξ2). 

Here, δ(θ) is the Dirac delta function, representing non-differential expression between 

two classes. The density functions g1(θ |ξ1) and g2(θ |ξ2) correspond to the non-null 

components of under-expression and over-expression, respectively, for a particular class, 

e.g., poor prognosis. The proportion πi represents the mixing proportion (i = 0, 1, 2), with 

π0 + π1 + π2 = 1. In the first-stage model in (2.1), we assume that the gene-specific 

variance σj
2
 is known. We denote Zij(i = 0,1,2; j = 1,2,…,m) as unobservable indicator 

random variables, such that Zij = 1 if gene j belongs to the i-th component, and Zij = 0 

otherwise. The πi (i = 0,1,2) correspond to the probability of Zij = 1. An estimate of the 

hyperparameter η = (π0, π1, ξ1, ξ2) can be obtained by maximizing the marginal likelihood 

of Yj (Carlin and Louis, 2000). We employ the expectation maximization (EM) algorithm 
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(Dempster and others, 1977) to cope with the unobservable indicator variable Zij in the 

mixture model. The hyperparameters of interest, i.e., ξ1 and ξ2 in the distribution of the 

effect sizes j, can be estimated more stably by using fixed or, more generally, 

constrained estimates of the mixing proportions or by introducing prior distributions on 

the mixing proportions in the EM algorithm (e.g., Gottardo and others, 2003; Newton 

and others, 2001; Newton and others, 2004; Lo and Gottardo, 2007). In this article, we 

consider the former strategy and adopt a two-stage procedure that estimates π0 as in 

Storey (2002) and treat this estimate as a fixed value in the EM algorithm. We assume 

conjugate normal distributions N(μ1, τ1
2
) and N(μ2, τ2

2
) (μ1 > 0, μ2 < 0) for g1(θ| ξ1) and 

g2(θ| ξ2), respectively. 

 

3. Posterior inference 

For simplicity, our discussion here is restricted to identifying genes with the greatest 

positive θj, i.e., overexpressed genes for a particular class. Its extension to the two-sided 

version—to obtain genes with the greatest absolute θj for both over-expressed and 

under-expressed genes—is straightforward. 

 

3.1. Ranking based on posterior mean (PM) 

From model (2.1), we obtain the posterior distribution: 

pj(θ|yj) = Pr(Z0j = 1|yj) p0j(θ| yj) + Pr(Z1j = 1|yj) p1j(θ| yj) + Pr(Z2j = 1|yj) p2j(θ| yj) , 

where p0j, p1j, and p2j are the posterior densities of each component, which are obtained as 

δ(θ) and 
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Here, h0j, h1j, and h2j are the marginal densities of the Yjs, in each component, namely N(0, 

σj
2
), N(μ1, σj

2
 + τ1

2
), and N(μ2, σj

2
 + τ2

2
) for i = 0,1,2, respectively. 

Minimizing the squared error loss, the Bayes estimator of θj is the posterior mean 

(Carlin and Louis, 2000). For the hierarchical mixture model, the posterior mean is 

obtained as 

E[θj|Yj] = Pr(Z0j = 1| yj) E[θj|Z0j = 1,Yj] + Pr(Z1j = 1| yj) E[θj|Z1j = 1,Yj]  

+ Pr(Z2j = 1| yj) E[θj|Z2j = 1,Yj] . (3.2) 

This is the weighted average of the posterior means of each component, where the 

weights are the posterior probabilities of component membership (3.1). The ranking is 

thus obtained via the magnitude of the posterior means (the ‗PM‘ method). 

 

3.2. Ranking based on rank posterior means (RPM) 

If the ranks of the parameters are the target feature, using the rank estimator is more 

appropriate than using the parameter estimator (Laird and Louis, 1989; Shen and Louis, 

1998; Louis and Shen, 1999). We consider ranking within differential genes with positive 

effects, defined as 
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where Rj has a large value when gene j belongs to the non-null component with positive 

effect and has a large θj
 
value, or is 0 when gene j belongs to the other components. For 

the squared error loss, the Bayes estimator of Rj is the posterior mean: 





m

k

kjkjjkjjjj yyθθyZyZyRE
1

11 ),|Pr()|1Pr()|1Pr(]|[  .    (3.3)

 

Thus, gene ranking is obtained by the rank posterior means (the ‗RPM‘ method). 

 

3.3. Ranking based on tail-area posterior probability (TPP) 

Because of the limited resources available in subsequent studies, the number of selected 

genes may be prespecified as a small number, K (Matsui and others, 2008). In this 

situation, we consider the K genes with the greatest positive effects as the target. Lin and 

others (2006) provided various loss functions and derived optimal ranking and selection 

rules via Bayesian decision theory; we generalize their rank-based misclassification loss 

function that equivalently penalizes to misclassifications between the true top K ranked 

genes and other the differential genes: 
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where 

FP(K, Rj, Rj
est

) = I{Rj ≤ m1 – K, Rj
est

 > m1 – K} 

 FN(K, Rj, Rj
est

) = I{Rj > m1 – K, Rj
est

 ≤ m1 – K} . 

The Rj
est

 are estimators of the Rj, and m1 = ∑j Z1j is the number of genes generated from 

the non-null component with positive effects in the m measured genes. 

The derived optimal rule is to select K genes which have large values of 

  j(K) = Pr(Rj > (m1 – K) | y) , 
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as in Lin and others (2006). However, it is difficult to obtain the posterior distribution of 

Rj and to calculate   j(K) directly. Instead, we can use a simple computable approximation 

of   j(K). Define γ = K / (m1+1) and let G1 be the cumulative distribution function of g1. 

Under the similar conditions of Theorem 5 described in Lin and others (2006), the 

approximation of   j(K) is obtained as 

)|1Pr(),1|)(Pr()(* 11

1

1 yy  

jjjj ZZγGθKP  ,   (3.4)
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P*j(K) corresponds to the tail-area posterior probability of θj. Proof of this approximation 

is provided in the Supplementary Material. Here, we denote this rule as the ‗TPP 

(tail-area posterior probability‘ method. The quantity m1 can be replaced by its estimator 

∑j Pr(Z1j = 1|yj) (McLachlan and others, 2004). 

 

4. Simulation studies 

We conducted a series of simulation studies to assess the performance of our proposed 

methods. Details of the simulations are presented in Section A of the Supplementary 

Material available at Biostatistics online. 

In summary, the sensitivity and root mean squared error (RMSE) of all the proposed 

methods were better than those of the other methods. As was expected, the TPP method 

had the greatest sensitivity, the RPM method had the lowest RMSE values, and the 

posterior probability of differentially expressed (PPDE) (3.1) ranking had the lowest false 
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positive rate. The posterior mean under unimodal hierarchical model (PMU) method, 

which lacks mixture components, had a lower sensitivity and a larger RMSE, compared 

with the PM method. The fold change had comparable sensitivity and RMSE values for 

large sample sizes, but not for small sample sizes. The fold change had very large false 

positive rates even when the sample size was large, because it does not guard against 

selecting null genes. 

 

5. Application to a breast cancer study 

We illustrate the proposed methods using the dataset from a breast cancer clinical study 

(Wang and others, 2005). The data are available from the NCBI GEO database 

(GSE2034). This study was a large Affymetrix-based gene expression profiling study of 

286 untreated patients with lymph-node-negative primary breast cancer, and analyzed 

estrogen receptor positive and negative patients separately. Here, we restrict our attention 

to the estrogen receptor positive patients. In this study, out of 22,283 genes, 60 genes 

were selected on the basis of statistical significance for predicting the risk of relapse. We 

considered comparison of patients who were relapse-free at five years (good prognostic 

group) and the other patients (poor prognostic group). During the follow-up period, of the 

204 estrogen receptor positive patients, 138 patients were relapse-free at five years, 

whilst 66 developed distant metastasis.  

The hyperparameters were estimated as 769.0ˆ
0 π , 055.0ˆ

1 π , 176.0ˆ
2 π , 

182.0ˆ
1 μ , 22

1 021.0ˆ τ , 149.0ˆ
2 μ , 22

2 014.0ˆ τ . The σj
2
 were estimated on a 

gene-by-gene basis assuming a common variance between the two prognostic groups. 

Figure 1 represents comparison between the RPM statistic, which was shown to yield 
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good gene ranking in the simulation studies in Section 4, and the other statistics for 

overexpressed genes in the poor prognostic group. Similar trends were observed in 

underexpressed genes for the poor prognostic group. Figure 1(a) indicates substantial 

discrepancy in gene ranking between the RPM statistic and the fold change. In Figure 

1(b), top ranked genes based on the RPM statistics had the smallest P-values, but 

low-ranked genes using the RPM statistic could also have very small P-values. Figures 

1(c) and (d) indicate good agreement of gene ranking among the PM, RPM, and TPP 

statistics, especially, for the greatest values of these statistics (i.e., for top-ranked genes). 

For example, out of top 30 genes based on the RPM statistic, 27 and 21 genes were also 

selected in top 30 genes based on the PM and TPP statistics, respectively. The 

discrepancy in gene ranking between the proposed methods and fold change in Figure 

1(a) would reflect very high false positive rates for fold change as we found in our 

simulation study.  

We also investigated overlap of top genes between the proposed methods and the 60 

genes reported in the original paper (see Section B of the Supplementary Material at 

Biostatistics online). There were 7 overlaps when the top 30 genes were selected by the 

RPM method for each of overexpression and underexpression in the poor prognostic 

group. 26 (43%) of the 60 genes reported in the original paper were amongst the top 1% 

of genes according to their RPM values. As indicated by Figure 1(b), there were fewer 

overlaps between the proposed methods and the t-statistic. Because the sensitivity of the 

proposed methods was higher, gene ranking based on the proposed methods would be 

more reliable.  
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6. Discussion 

In microarray studies, prioritizing or ranking genes is an important statistical task. 

Because the number of simultaneous comparisons can go into the tens of thousands, gene 

ranking can suffer from a lack of accuracy. Sharing information across genes and 

incorporating the null/non-null mixture structure are expected to be effective in 

improving accuracy. As seen in our simulations, the proposed PM, RPM, and TPP 

methods showed higher sensitivity and lower error of rank estimation for differential 

genes with the greatest effects, compared to conventional methods. In addition, these 

methods had low false positive rates. Although the results of our resampling studies 

indicated that such good performance can be compromised by violating the model 

assumptions, including independence among genes and the normality of gene expressions, 

our ranking methods, especially the RPM method, were still accurate compared to the 

other methods. Violation of normality can be handled by using other parametric 

distributions, as noted in Section 2. The greater accuracy of the PM method, compared to 

the PMU method, shows that incorporating the null-mixture component is effective in 

improving ranking accuracy. The PPDE ranking had the lowest false positive rate, as was 

expected because of its theoretical optimality (Berger, 1985; McLachlan and others, 

2006). These results are reasonable because a ranking method performs well for the 

criterion or loss function in gene ranking from which it is derived. Ranking methods 

should be selected according to the criterion of interest in gene ranking, i.e., depending 

on the probability of non-differential expression or the magnitude of differential 

expression. 

The ranking accuracy of fold change would be asymptotically optimal because of the 
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good performance in sensitivity and RMSE of gene ranking under large sample scenarios 

(n/2 = 80) in the simulations described in the Supplementary Material. Further, the RMSE 

of fold change was lower than the proposed empirical Bayes methods under large sample 

scenarios in the resampling exercise in the Supplementary Material. A similarly good 

performance using conventional methods, compared to those of empirical Bayes methods, 

has also been seen with large samples in other experiments (Greenland, 1993). In small 

sample scenarios, however, optimality was largely violated. Further, with respect to false 

positive rates, the ranking of the fold change did not perform well, even with large 

samples. Although the MAQC project (MAQC Consortium, 2006) reported good 

reproducibility of ranking based on fold change, ―accuracy‖ and ―reproducibility‖ are 

different concepts as remarked by Witten and Tibshirani (in preparation). Hence, ranking 

via the fold change is not recommended for general use when the objective is to prevent 

false positive detection. 

For general practical use, the proposed three methods should be used according to the 

purpose of analysis. However, for the three proposed methods, the sensitivities in 

detecting differential genes with the greatest effects as well as the false positive rates 

were comparable. Accordingly, we would recommend the RPM method.  

As noted in Section 2, attempts to obtain stable estimates of the hyperparameters of 

interest, i.e., ξ1 and ξ2 in the distribution of the effect sizes j, include the use of 

reasonable estimates of the mixing proportions such as treating π0 as fixed quantities, 

invoking reasonable constraints or placing prior distributions on the mixing proportions 

in the EM algorithm. Comparison of these approaches is outside the scope of this paper, 

but it is an important subject for future research.  
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The R code for gene ranking is available in the Supplementary Material at 

Biostatistics online. 

 

Supplementary Material 

Supplementary material is available at http://biostatistics.oxfordjournals.org. 
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Figure 1. Comparison of the RPM statistic with other statistics for the breast cancer 

dataset. The four panels show scatter plots of the RPM statistic versus the fold change (a), 

the P-values from two-sample t-tests (b), the PM statistic (c), and the TPP statistic with K 

= 30, for overexpressed genes in the poor prognostic group.  


