160 research outputs found

    The design of a slit ICRF antenna in EU-DEMO

    Get PDF
    Although ICRF heating has achieved the high heating efficiency necessary to achieve high-performance plasmas, it has not overcome the reliability and economic problems associated with the antenna structure inside the vacuum vessel in fusion reactors. We suggested a slit ICRF antenna that uses the blanket surface as a transmission line to solve these problems. With a single slit ICRF antenna with a width of 3 m and a height of 15 cm, the electric field strength to the magnetic field direction was successfully suppressed to 5 kV/cm when 20 MW of power radiation was achieved from the single slit. The slit ICRF antenna had a bending angle in the electromagnetic wave transmission path to prevent direct neutron impact on the first wall and a vacuum gate from rapidly preventing water or air leakage accidents. The slit ICRF antenna has a simple structure that allows heating at high power density while minimizing blanket volume reduction

    Fault detection system for ICRF transmission line in LHD

    Get PDF
    The transmission line is one of the most important components of ion cyclotron range of frequencies (ICRF) heating devices. In the case of unexpected trouble on the line, such as a breakdown, immediate power-off is necessary in order to avoid severe damage on the line. Breakdowns are difficult to detect with a reflection monitor, since the reflection may originate from a change in the antenna-plasma coupling. In the Large Helical Device (LHD), a Fault Detection System (FDS) for the transmission line was developed, which detects the breakdown utilizing the unbalance of three signals from the both ends of the line. For the precise balancing in the normal condition, the calibration is iteratively conducted. FDS is insensitive to the change of the antenna impedance, therefore, FDS can detect breakdown clearly. Frequency shift is also detectable with the FDS applied to a long transmission line. Therefore, the self-oscillation accompanying frequency shift could be detected in addition to breakdown

    ECCD Experiment Using an Upgraded ECH System on LHD

    Get PDF
    Electron cyclotron current drive (ECCD) is an attractive tool for controlling plasmas. In the large helical device (LHD), ECCD experiments have been performed by using an EC-wave power source, gyrotron, with a frequency of 84 GHz. The maximum driven current was ?9 kA with 100 kW injection power to plasma and 8 s duration of EC-wave pulse. These years, high-power and long-pulse 77 GHz gyrotrons were newly installed. An ECCD experiment with 775 kW injection power was performed. The 77 GHz waves of 8 s pulse duration sustained the plasmas. The EC-wave beam direction was scanned toroidally, keeping the beam direction aiming at the magnetic axis in X-mode polarization. In spite of the change in the EC-wave beam direction, plasma parameters such as the line-average electron density, the central electron temperature and the plasma stored energy were kept nearly the same values for the discharges, ?0.3 × 1019 m?3, ?3 keV and ?30 kJ, except for the plasma current. The plasma current showed a systematic change with the change in the beam direction for ECCD, and at an optimum direction with N// ? ?0.3, the plasma current reached its maximum, ?40 kA. Also, current drive efficiency normalized with density and power was improved by 50% compared with that at the former 84 GHz ECCD experiment

    Retrospective comparison of clinical and angiographic outcomes after primary stenting using sirolimus-eluting and bare-metal stents in nonrandomized consecutive 568 patients with first ST-segment elevated myocardial infarctions

    Get PDF
    SummaryBackground and purposeThe long-term safety and efficacy of primary stenting using drug-eluting stents (DES) in patients with ST-segment elevation myocardial infarction (STEMI) are not fully understood in Japan. Therefore, we retrospectively examined the midterm clinical and angiographic outcomes in STEMI patients after primary stenting using sirolimus-eluting stents (SES) in a clinical setting through a historical comparison with those of bare-metal stents (BMS).Methods and resultsThe study design was a retrospective, nonrandomized, and single-center study. The clinical outcomes for 568 consecutive patients who presented within 12h of their first STEMI and who were treated with BMS (n=198; 184 STEMIs from June 2003 to August 2004 and 14 STEMIs from September 2004 to May 2007) or SES (n=370; from August 2004 to May 2007) at our medical center in Japan were retrospectively investigated in February 2010. The incidence of post-discharge events (comprising cardiac death and nonfatal recurrent MI) after SES placement (3.9%) was not significantly different from that after BMS placement (6.7%). SES was not related to the risk of post-discharge events (mean follow-up for SES, 1327±415 days; BMS, 1818±681 days) (hazard ratio of 0.369 at 95% CI, 0.119–1.147, p=0.085). The incidence of definite stent thromboses after SES placement (0.54%) was not significantly higher than that after BMS placement (0%). The incidence of binary in-stent restenosis (% diameter stenosis of more than 50% at secondary angiography) after SES placement (8.3%) was significantly lower than that after BMS placement (25.7%; p<0.001).ConclusionsFrom the present historical comparison of SES and BMS, we conclude that primary stenting using SES in a clinical setting has favorable clinical and angiographic outcomes in Japanese STEMI patients

    High Harmonic ECH Experiment for Extension of Heating Parameter Regime in LHD

    Get PDF
    High harmonic electron cyclotron resonance heating (ECH) can extend the plasma heating region to higher density and higher β compared to the normal heating scenario. In this study, the heating characteristics of the second-harmonic ordinary (O2) and third-harmonic extraordinary (X3) modes and the possible extension of heating regime are experimentally confirmed. At the same time, a comparative study using ray-tracing calculation was performed in the realistic three-dimensional configuration of the Large Helical Device. The O2 mode heating showed a 40% absorption rate even above the X2 mode cut-off density. The X3 mode heating using powerful 77 GHz gyrotrons demonstrated an increase of about 40% in the central electron temperature in the plasmas at β-value of about 1%. These results were quantitatively explained to some extent by ray-tracing calculations

    Experimental Results for Electron Bernstein Wave Heating in the Large Helical Device

    Get PDF
    Electron cyclotron heating (ECH) using electron Bernstein waves (EBWs) was studied in the large helical device (LHD). Oblique launching of the slow extraordinary (SX-) mode from the high field side and oblique launching of the ordinary (O-) mode from the low field side were adopted to excite EBWs in the LHD by using electron cyclotron (EC) wave antennas installed apart from the plasma surface. Increases in the stored energy and electron temperature were observed for both cases of launching. These launching methods for ECH using EBWs (EBWH) is promising for high-density operation in future helical fusion devices instead of conventional ECH by normal electromagnetic modes

    Third Harmonic ICRF Heating in LHD High Beta Experiments

    Get PDF
    The ion cyclotron range of frequencies (ICRF) heating power injection in the hydrogen experiment in LHD was demonstrated after the upgrade of ICRF antennas. The ICRF wave couples and accelerates the energetic particles injected by perpendicular-NBIs with 40 keV. The simulation by the MORH code shows the existence of energetic particles around the ICRF third harmonic resonance layers. As the result of ICRF heating power deposition, the beta value increased by 0.2% in absolute beta mainly due to the increased energetic particle content. The increase of energetic ions particularly around 60 keV, which should be accelerated by the ICRF heating, is observed. The ICRF heating efficiency was approximately 30%–50%, estimated from the break-in-slope analysis at the turn off timing of ICRF power from the stored energy measured by diamagnetic loops. This increase of the stored energy is mostly the contribution of the increased energetic particles. The heating efficiency increases as the density increases

    Development of power combination system for high-power and long-pulse ICRF heating in LHD

    Get PDF
    In the Large Helical Device (LHD), the development of high-power and long-pulse Ion Cyclotron Range of Frequencies (ICRF) heating system is ongoing. The developed Field-Aligned-Impedance-Transforming (FAIT) antenna has the potential for high-power injection of more than 1.8 MW. Here, to achieve this injection power, a power combination system was developed. An optimized power combiner was designed by repeated simulations, and then was fabricated and installed in the ICRF transmission system. Control of the power and the phase of incident waves into the input ports of the power combiner is important for the power combination. Therefore, a real-time control system was developed, and prompt reduction of power loss was demonstrated. As a result, combined powers of more than 2 MW for 6 s and 1 MW for 10 min were successfully achieved

    ICRF Heating Experiment on LHD in Foreseeing a Future Fusion Device

    Get PDF
    Plasma heating experiment using the ion cyclotron range of frequencies (ICRF) heating has been carried out. Aiming at the high power and long pulse heating and application to the future fusion device, the antenna without Faraday shield was tested and newly developed antenna, called FAIT antenna, was used. Steady state experiment was progressed by using the high power ICRF heating with those antennas. Plasma discharge length about 48 minutes was achieved with the heating power of 1.2MW and a line-averaged electron density of 1.2 × 1019 m?3. The injected heating energy reached 3.36 GJ and it is highest in the fusion plasma experiments. We will promote the high power steady state research involving the evaluation of the antennas and heating performance

    Notch Filter in 70 GHz Range for Microwave Plasma Diagnostics

    Get PDF
    A notch filter for the rejection of stray light from gigahertz range heating sources was developed to protect a vulnerable microwave plasma diagnostic system. As one of the applications, we consider the installation of the notch filter into the receiver of a collective Thomson scattering diagnostic in the Large Helical Device. Experimental observations indicate that two types of notch filters are required for main and spurious mode rejection; they have very narrow, steep shapes to avoid disturbing the diagnostic signal. On the basis of numerically simulated results, notch filters were fabricated, and their performance was evaluated. An attenuation level of 35 dB at 74.746 GHz with a 3 dB bandwidth of 0.49 GHz is achieved by two pairs of resonator cavities. This attenuation is acceptable in our study
    • …
    corecore