41 research outputs found

    The spin polarization of palladium on magneto-electric Cr\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    While induced spin polarization of a palladium (Pd) overlayer on antiferromagnetic and magneto-electric Cr2O3(0001) is possible because of the boundary polarization at the Cr2O3(0001), in the single domain state, the Pd thin film appears to be ferromagnetic on its own, likely as a result of strain. In the conduction band, we find the experimental evidence of ferromagnetic spin polarized in Pd thin films on a Cr2O3(0001) single crystal, especially in the thin limit, Pd thickness of around 1–4 nm. Indeed there is significant spin polarization in 10 Å thick Pd films on Cr2O3(0001) at 310 K, i.e. above the Néel temperature of bulk Cr2O3. While Cr2O3(0001) has surface moments that tend to align along the surface normal, for Pd on Cr2O3, the spin polarization contains an in-plane component. Strain in the Pd adlayer on Cr2O3(0001) appears correlated to the spin polarization measured in spin polarized inverse photoemission spectroscopy. Further evidence for magnetization of Pd on Cr2O3 is provided by measurement of the exchange bias fields in Cr2O3/Pd(buffer)/[Co/Pd]n exchange bias systems. The magnitude of the exchange bias field is, over a wide temperature range, virtually unaffected by the Pd thickness variation between 1 and 2 nm

    Interfacial and Surface Magnetism in Epitaxial NiCo2O4(001)/MgAl2O4 Films

    Get PDF
    NiCo2O4 (NCO) films grown on MgAl2O4 (001) substrates have been studied using magnetometry, x-ray magnetic circular dichroism (XMCD) based on x-ray absorption spectroscopy, and spin-polarized inverse photoemission spectroscopy (SPIPES) with various thickness down to 1.6 nm. The magnetic behavior can be understood in terms of a layer of optimal NCO and an interfacial layer (1.2± 0.1 nm), with a small canting of magnetization at the surface. The thickness dependence of the optimal layer can be described by the finite-scaling theory with a critical exponent consistent with the high perpendicular magnetic anisotropy. The interfacial layer couples antiferromagnetically to the optimal layer, generating exchange-spring styled magnetic hysteresis in the thinnest films. The non-optimal and measurement-speed-dependent magnetic properties of the interfacial layer suggest substantial interfacial diffusion

    Detection of decoupled surface and bulk states in epitaxial orthorhombic SrIrO3 thin films

    Get PDF
    We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from the SrTiO3 substrate to the SrIrO3(001) surface. Our study sheds light on the misfit relaxation mechanism in epitaxial SrIrO3 thin films in the orthorhombic phase, which is metastable in bulk
    corecore