35 research outputs found

    Spin susceptibility and fluctuation corrections in the BCS-BEC crossover regime of an ultracold Fermi gas

    Full text link
    We investigate magnetic properties and effects of pairing fluctuations in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an ultracold Fermi gas. Recently, Liu and Hu, and Parish, pointed out that the strong-coupling theory developed by Nozi\`eres and Schmitt-Rink (NSR), which has been extensively used to successfully clarify various physical properties of cold Fermi gases, unphysically gives negative spin susceptibility in the BCS-BEC crossover region. The same problem is found to also exist in the ordinary non-self-consistent T-matrix approximation. In this paper, we clarify that this serious problem comes from incomplete treatment in term of pseudogap phenomena originating from strong pairing fluctuations, as well as effects of spin fluctuations on the spin susceptibility. Including these two key issues, we construct an extended T-matrix theory which can overcome this problem. The resulting positive spin susceptibility agrees well with the recent experiment on a 6Li Fermi gas done by Sanner and co-workers. We also apply our theory to a polarized Fermi gas to examine the superfluid phase transition temperature Tc, as a function of the polarization rate. Since the spin susceptibility is an important physical quantity, especially in singlet Fermi superfluids, our results would be useful in considering how singlet pairs appear above and below Tc in the BCS-BEC crossover regime of cold Fermi gases.Comment: 21 pages, 9 figure

    Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario

    Get PDF
    This study evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr(-1) of SO2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysis shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m(-2), depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m(-2) and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (∼ −4 W m(-2)) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds
    corecore