562 research outputs found
Theory for Planar Hall Effect in Organic Dirac Fermion System
In a recent experiment on the interlayer magnetoresistance in the
quasi-two-dimensional organic salt, -(BEDT-TTF)I, it has been
observed that at low temperatures, interlayer tunneling attains phase
coherence, leading to the emergence of a three-dimensional electronic
structure. Theoretically and experimentally it has been suggested that the
system exhibits characteristics of a three-dimensional Dirac semimetal as a
consequence of broken time-reversal symmetry and inversion symmetry. Here, we
perform a theoretical calculation of the magnetoconductivity under an in-plane
magnetic field and demonstrate that the system displays a planar Hall effect.
Our calculations are based on a realistic model for
-(BEDT-TTF)I incorporating interlayer tunneling and the tilt of
the Dirac cone. Given that the planar Hall effect is anticipated as a
consequence of chiral anomaly, our findings provide support for the
classification of -(BEDT-TTF)I as a three-dimensional Dirac
semimetal.Comment: 4 pages, 3 figure
REMOTE BACTERICIDAL ACTIVITY OF TIO2 NANOPARTICLES
The remote bactericidal effect of TiO2 photocatalyst, i.e., the bactericidal effect away from the photocatalyst, was successfully achieved using a humidified airflow. The TiO2 photocatalyst used was anatase-type TiO2 nanoparticles (NPs) annealed with a low-temperature O2 plasma. For comparison, anatase-type TiO2 NPs annealed in the air were used. The bacteria, Bacillus subtilis, were placed away from the TiO2 NPs. The plasma-assisted-annealed TiO2 NPs significantly inactivated 99% of the bacterial cells in 5 h, whereas the pristine and air-annealed TiO2 NPs inactivated 88-90% of the bacterial cells. The remote bactericidal effect of plasma-assisted-annealed TiO2 NPs would be attributed to a larger amount of H2O2 molecules traveled by the airflow from the TiO2 NPs. The molecules were generated by chemically reacting more photoexcited carriers on the TiO2 surface with H2O and O2 in the airflow. These photoexcited carriers originated from more oxygen-based species adsorbed and more oxygen vacancies introduced on the TiO2 surface by the plasma-assisted-annealing
Recommended from our members
Accuracy of Length of Virtual Stents in Treatment of Intracranial Wide-Necked Aneurysms.
Background and purposePrecise stent deployment is important for successful treatment of intracranial aneurysms by stent-assisted coiling (SAC). We evaluated the accuracy of virtual stents generated using commercial stent planning software by comparing the length of virtual and actually deployed intracranial laser cut stents on three-dimensional digital subtraction angiography (3D-DSA) images.MethodsWe retrospectively analyzed the data of 75 consecutive cases of intracranial wide-necked aneurysms treated with the SAC technique using laser cut stents. Based on 3D-DSA images acquired by C-arm CT, stent sizing and placement were intraoperatively simulated by a commercial software application. The difference in length of the stents was estimated by measuring proximal discrepancies between the end points of the virtual and actually deployed stents on fused pre-procedural and post-procedural 3D-DSA images. Discrepancies between distal stent end points were manually minimized. The Kruskal-Wallis test was applied to test whether stent location, type, and length had an effect on difference in length between virtual and real stent.ResultsThe median difference in length between virtual and real stents was 1.58 mm with interquartile range 1.12-2.12 mm. There was no evidence for an effect of stent location (p = 0.23), stent type (p = 0.33), or stent length (p = 0.53) on difference in length between virtual and real stents.ConclusionsStent planning software allows 3D simulation of laser cut stents overlain on 3D-DSA images of vessels and may thus be useful for stent selection and deployment of laser cut stents during stent-assisted coiling of intracranial aneurysms
Estimated pretreatment hemodynamic prognostic factors of aneurysm recurrence after endovascular embolization.
BACKGROUND:Hemodynamic factors play important roles in aneurysm recurrence after endovascular treatment. OBJECTIVE:Predicting the risk of recurrence by hemodynamic analysis using an untreated aneurysm model is important because such prediction is required before treatment. METHODS:We retrospectively analyzed hemodynamic factors associated with aneurysm recurrence from pretreatment models of five recurrent and five stable posterior communicating artery (Pcom) aneurysms with no significant differences in aneurysm volume, coil packing density, or sizes of the dome, neck, or Pcom. Hemodynamic factors of velocity ratio, flow rate, pressure ratio, and wall shear stress were investigated. RESULTS:Among the hemodynamic factors investigated, velocity ratio and flow rate of the Pcom showed significant differences between the recurrence group and stable group (0.630 ± 0.062 and 0.926 ± 0.051, P= 0.016; 56.4 ± 8.9 and 121.6 ± 6.7, P= 0.008, respectively). CONCLUSIONS:Our results suggest that hemodynamic factors may be associated with aneurysm recurrence among Pcom aneurysms. Velocity and flow rate in the Pcom may be a pretreatment prognostic factor for aneurysm recurrence after endovascular treatment
Establishment of a human pluripotent stem cell-derived MKX-td Tomato reporter system
Tendon regeneration is difficult because detailed knowledge about tendon progenitor cells (TPCs), which produce tenocytes to repair tendon tissue, has not been revealed. Mohawk homeobox (MKX) is a marker of TPCs or tenocytes, but a human pluripotent stem cell (hPSC)-based reporter system that visualizes MKX+ cells has not been developed. Here, we established an hPSC-derived MKX-tdTomato reporter cell line and tested the induction ratio of MKX-tdTomato(+) cells using our stepwise/xeno-free differentiation protocol. MKX-tdTomato(+) cells were generated with high efficiency and expressed tendon-specific markers, including MKX, SCX, TNMD, and COL1A1. Our MKX-tdTomato hPSC line would be a useful tool for studying the development or regeneration of tendon tissue
An Empirical Study of Electric Power Demand Control by Real-time Feedback of Consumption Levels: Case of Nushima Island Households
AbstractElectric power demand management will play an important role in the creation of smart-energy communities. We are conducting a field experiment on the real-time feedback of electric power consumption via smart meters and tablet PCs with the participation of 51 households on Nushima Island, one of Japan's remote islands. Our estimate of the effect of feedback in reducing power demand by panel data analysis has revealed that such feedback achieves a saving of 7.6 percent in electric power demand
Ovariectomy enhances renal cortical expression and function of cyclooxygenase-2
Ovariectomy enhances renal cortical expression and function of cyclooxygenase-2.BackgroundCyclooxygenase-2 (COX-2) inhibitors are used as analgesics in postmenopausal women, who develop edema and require a salt-restricted diet. This study was performed to determine the renal expression of COX-2 and on COX-2–dependent regulation of renal blood flow (RBF) in ovariectomized rats.MethodsSprague-Dawley rats were divided into 4 groups: sham-operated rats fed a normal-salt diet (Sh+NS) or a low-salt diet (Sh+LS), and bilaterally ovariectomized rats fed a normal-salt diet (Ox+NS) or a low-salt diet (Ox+LS) (N = 6 in each group). Estrogen replacement therapy was performed on other ovariectomized rats. A renal clearance study was performed in anesthetized animals.ResultsOvariectomy increased renal cortical COX-2 expression independently of dietary salt intake (Sh+NS <Ox+N; Sh+LS <Ox+LS). Inhibition of COX-2 by NS398 reduced the urinary excretion of 6-keto-prostaglandin F1α in all 4 groups, although the reduction was greater in the Ox+LS group than in the Ox+NS and Sh+LS groups, which in turn had a greater reduction than the Sh+NS group. RBF significantly decreased in every group except the Sh+NS group, but no effect on blood pressure, inulin clearance, or urinary sodium excretion was seen. The decrease in RBF was significantly greater in the Ox+LS group than in the Sh+LS and Ox+NS group. The decrease in RBF was dependent on cortical RBF in the Sh+LS and Ox+NS groups, and on both cortical and medullary RBF in the Ox+LS group. Estrogen replacement therapy reversed the ovariectomy-induced changes.ConclusionEstrogen-dependent COX-2 expression plays an important role in the RBF regulation in female rats
- …