154 research outputs found

    Structures and Magnetic Properties of Tm1-yYyMn1-xCoxO3

    Get PDF
    The structure and magnetic properties of Tm1−y Y y Mn1−x Co x O3 with 0 ≦ x ≦ 0.5 and 0 ≦ y ≦ 0.3 were investigated by X-ray diffraction, specific heat and magnetization measurements. Thulium manganite TmMnO3 prepared by solid-state synthesis at ambient pressure is hexagonal and antiferromagnetic with a Nèel temperature T N of 86 K. The substitution of Y for Tm in TmMnO3 does not greatly affect the fundamental hexagonal structure. The magnetization and specific heat measurement results for Tm1−y Y y MnO3 can be qualitatively explained in terms of the dilution effect of Tm by Y. On the other hand, the structure of TmMn1−x Co x O3 changes gradually from hexagonal to orthorhombic with the substitution of Co for Mn; hexagonal and orthorhombic phases coexist in samples for x ≦ 0.3 whereas TmMn0.6Co0.4O3 is almost a single orthorhombic phase. The magnetization of TmMn0.6Co0.4O3 in a field of 250 Oe increases rapidly at about 60K with decreasing temperature. The difference between zero-field-cooled (ZFC) and field-cooled (FC) magnetizations increases remarkably at about 60 K. Moreover, the temperature dependences of the ZFC and the FC magnetizations exhibit peaks at about 40 and 30K, respectively. Thus, TmMn1−x Co x O3 exhibits complex magnetic properties

    Demethylation and tannin-like properties of guaiacyl/syringyl-type and syringyl-type dehydrogenation polymers using iodocyclohexane

    Get PDF
    The demethylation of guaiacyl/syringyl (G/S)-type (G/S = 1/1) and syringyl (S)-type dehydrogenation polymers (DHPs) using iodocyclohexane (ICH) under reflux in DMF was performed to afford demethylated G/S- and S-DHPs in moderate yields. Along with significant structural changes, such as side-chain cleavage and recondensation, as observed using heteronuclear single quantum coherence (HSQC) NMR spectra, the phenolic-OH content of the demethylated DHPs increased, as expected. The tannin-like properties, such as the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging ability, iron(III) binding ability, and bovine serum albumin (BSA) adsorption ability, of the demethylated DHPs increased with increasing reaction time. In particular, the BSA adsorption ability was significantly enhanced by demethylation of the G/S- and S-DHPs, and was better than that of G-DHP reported previously. These results indicate that hardwood lignin containing both G and S units is more suitable than softwood lignin containing only G units for functionalization through demethylation into a tannin-like polymer, which has applications as a natural oxidant, metal adsorbent, and protein adsorbent

    Synthesis of diblock copolymers with cellulose derivatives 4. Self-assembled nanoparticles of amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end

    Get PDF
    Self-assembled cellulose-pyrene nanoparticles were prepared from amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end, N-(1-pyrenebutyloyl)-β-cellulosylamine (CELL13Py and CELL30Py, the number average degrees of polymerization (DPn) of 13 and 30, respectively) and N-(15-(1-pyrenebutyloylamino)-pentadecanoyl)-β-cellulosylamine (CELL13C15Py and CELL30C15Py, DPn of 13 and 30, respectively). Transmission electron microscopy (TEM) observation revealed that CELL13C15Py and CELL30C15Py formed self-assembled nanoparticles with the average diameters of 108.8 and 40.0 nm, respectively. The average radius of CELL30C15Py nanoparticles (20.0 nm) agreed well with the molecular length of its cellulose chain (19.2 nm). CELL30C15Py nanoparticles were expected to have monolayered structure, consisting of cellulose shell with radial orientation and hydrophobic core of 15-(1-pyrenebutyloylamino)-pentadecanoyl groups. The fluorescent spectrum of CELL30C15Py nanoparticles showed an excimer emission due to dimerized pyrene groups, indicating that the pyrene groups at the reducing-end of cellulose are associating in the particles. The balance of hydrophilic and hydrophobic parts of the cellulose derivatives controlled their self-assembled nanostructures. X-ray diffraction measurements revealed that radially oriented cellulose chains of CELL30C15Py nanoparticles were mostly amorphous, and at the same time exhibited weak reflection pattern of cellulose II, which is believed to have anti-parallel orientation

    High genetic differentiation between an African and a non-African strain of Drosophila simulans revealed by segregation distortion and reduced crossover frequency

    Get PDF
    Abstract Drosophila simulans strains originating from Madagascar and nearby islands in the Indian Ocean often differ from those elsewhere in the number of sex comb teeth and the degree of morphological anomaly in hybrids with D. melanogaster. Here, we report a strong segregation distortion in the F1 intercross between two D. simulans strains originating from Madagascar and the US, possibly at both the gametic and zygotic levels. Strong bias against alleles of the Madagascar strain was observed for all ten marker loci distributed over the entire second chromosome in the F1 intercross, but only a few showed a weak distortion in the isogenic backgrounds of either strains. Significant deviations of genotype frequencies from Hardy-Weinberg proportions were consistently observed for the second chromosome. By contrast, the X and third chromosomes did not show any strong segregation distortion. Crossover frequency on the second chromosome was uniformly reduced in isogenic backgrounds whereas the map lengths in the F1 intercross were comparable to or larger than that of the standard D. melanogaster map. We discuss these findings in relation to previous studies on other traits and interspecific differences between D. mauritiana, which is endemic to Mauritius Island, and D. simulans

    Effects of small Hsp genes on developmental stability and microenvironmental canalization

    Get PDF
    Background: Progression of development has to be insulated from the damaging impacts of environmental and genetic perturbations to produce highly predictable phenotypes. Molecular chaperones, such as the heat shock proteins (HSPs), are known to buffer various environmental stresses, and are deeply involved in protein homeostasis. These characteristics of HSPs imply that they might affect developmental buffering and canalization. Results: We examined the role of nine Hsp genes using the GAL4/UAS-RNAi system on phenotypic variation of various morphological traits in Drosophila melanogaster. The stability of bristle number, wing size and wing shape was characterized through fluctuating asymmetry (FA) and the coefficient of variation (CV), or among-individual variation. Progeny of the GAL4/Hsp-RNAi crosses tended to have reduced trait means for both wing size and wing shape. Transcriptional knockdown of Hsp67Bc and Hsp22 significantly increased FA of bristle number, while knockdown of Hsp67Ba significantly increased FA and among-individual variation of wing shape but only in males. Suppression of Hsp67Bb expression significantly increased among-individual variation of bristle number. The knockdown of gene expression was confirmed for Hsp67Ba, Hsp67Bc, Hsp22, and Hsp67Bb. Correlation between FA and CV or among-individual variation of each trait is weak and not significant except for the case of male wing shape. Conclusion: Four small Hsp genes (Hsp22, Hsp67Ba, Hsp67Bb and Hsp67Bc) showed involvement in the processes of morphogenesis and developmental stability. Due to possible different functions in terms of developmental buffering of these small Hsps, phenotypic stability of an organism is probably maintained by multiple mechanisms triggered by different environmental and genetic stresses on different traits. This novel finding may lead to a better understanding of non-Hsp90 molecular mechanisms controlling variability in morphological traits

    Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa

    Get PDF
    Intraspecific variation in mating signals and preferences can be a potential source of incipient speciation. Variable crossability between Drosophila melanogaster and D. simulans among different strains suggested the abundance of such variations. A particular focus on one combination of D. melanogaster strains, TW1(G23) and Mel6(G59), that showed different crossabilities to D. simulans, revealed that the mating between females from the former and males from the latter occurs at low frequency. The cuticular hydrocarbon transfer experiment indicated that cuticular hydrocarbons of TW1 females have an inhibitory effect on courtship by Mel6 males. A candidate component, a C25 diene, was inferred from the gas chromatography analyses. The intensity of male refusal of TW1 females was variable among different strains of D. melanogaster, which suggested the presence of variation in sensitivity to different chemicals on the cuticle. Such variation could be a potential factor for the establishment of premating isolation under some conditions

    De novo NSF mutations cause early infantile epileptic encephalopathy

    Get PDF
    N‐ethylmaleimide‐sensitive factor (NSF) plays a critical role in intracellular vesicle transport, which is essential for neurotransmitter release. Herein, we, for the first time, document human monogenic disease phenotype of de novo pathogenic variants in NSF, that is, epileptic encephalopathy of early infantile onset. When expressed in the developing eye of Drosophila, the mutant NSF severely affected eye development, while the wild‐type allele had no detectable effect under the same conditions. Our findings suggest that the two pathogenic variants exert a dominant negative effect. De novo heterozygous mutations in the NSF gene cause early infantile epileptic encephalopathy

    Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plants with altered lignin composition

    Get PDF
    The aromatic composition of lignins is considered an important trait that affects the physico-chemical properties of lignocellulosic biomass. However, our knowledge of the relationship between lignin structure and biomass utilization properties remains limited, especially in monocotyledonous grass species, despite their potential as biomass feedstocks. In this study, we used recently produced rice transgenic lines with distinct lignin monomer compositions, i.e., guaiacyl (G)/syringyl (S)/p-hydroxyphenyl (H) aromatic unit ratios, to study the impact of lignin composition on the chemical reactivity, enzymatic saccharification efficiency and calorific value of rice lignocellulose. The H-lignin-enriched rice transgenic line showed significantly enhanced biomass saccharification efficiency after alkali and acid pretreatments and even without any pretreatment, whereas the S-lignin-enriched rice transgenic line displayed enhanced saccharification efficiency after liquid hot water pretreatment. While we detected no significant differences in biomass heating values between the transgenic rice materials tested, analysis of synthetic lignins comprising only G, S or H units suggested that increased ratios of G or H units could increase the heating value of lignin-based solid biofuels

    Semi-automatic staging area for high-quality structured data extraction from scientific literature

    Full text link
    In this study, we propose a staging area for ingesting new superconductors' experimental data in SuperCon that is machine-collected from scientific articles. Our objective is to enhance the efficiency of updating SuperCon while maintaining or enhancing the data quality. We present a semi-automatic staging area driven by a workflow combining automatic and manual processes on the extracted database. An anomaly detection automatic process aims to pre-screen the collected data. Users can then manually correct any errors through a user interface tailored to simplify the data verification on the original PDF documents. Additionally, when a record is corrected, its raw data is collected and utilised to improve machine learning models as training data. Evaluation experiments demonstrate that our staging area significantly improves curation quality. We compare the interface with the traditional manual approach of reading PDF documents and recording information in an Excel document. Using the interface boosts the precision and recall by 6% and 50%, respectively to an average increase of 40% in F1-score.Comment: 5 tables, 9 figures, 31 page

    The Role of c-fos in Cell Death and Regeneration of Retinal Ganglion Cells

    Get PDF
    PURPOSE. To investigate the effect of c-fos on apoptotic cell death and regeneration of damaged retinal ganglion cells (RGCs) in tissue culture of retinal explants. METHODS. Retinas from transgenic mice carrying the exogenous c-fos gene under the control of the interferon (IFN)-␣/␤ inducible Mx-promoter (Mx-c-fos), c-fos-deficient mice, and littermate control mice were dissected and cultured in a threedimensional collagen gel culture system, followed by an analysis of TdT-dUTP terminal nick-end labeling (TUNEL) staining and measurement of neurites that emerged from explants. RESULTS. Compared with littermate control mice, Mx-c-fos transgenic animals showed a higher ratio of TUNEL positivity in the RGC layer from early in the culture period that correlated with the small number of regenerating neurites. In contrast, the c-fos-null mutated mice showed a still-lower ratio of TUNEL-positive cells. Nevertheless, the number of regenerating neurites was significantly lower in the initial phase, although the drastic increase in density of neurite regeneration was observed in the late period of culture. CONCLUSIONS. These findings suggest that c-fos is involved in both apoptotic cell death and regeneration of damaged RGCs. Elucidation of the precise c-fos-mediated cascade involved in RGC apoptosis and regeneration is significant in realizing neuronal survival and regeneration. (Invest Ophthalmol Vis Sci
    corecore