9 research outputs found

    A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    Get PDF
    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100 Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6 ± 3.17 kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI

    Cerebral Hemodynamics in Speech-Related Cortical Areas: Articulation Learning Involves the Inferior Frontal Gyrus, Ventral Sensory-Motor Cortex, and Parietal-Temporal Sylvian Area

    Get PDF
    Although motor training programs have been applied to childhood apraxia of speech (AOS), the neural mechanisms of articulation learning are not well understood. To this aim, we recorded cerebral hemodynamic activity in the left hemisphere of healthy subjects (n = 15) during articulation learning. We used near-infrared spectroscopy (NIRS) while articulated voices were recorded and analyzed using spectrograms. The study consisted of two experimental sessions (modified and control sessions) in which participants were asked to repeat the articulation of the syllables “i-chi-ni” with and without an occlusal splint. This splint was used to increase the vertical dimension of occlusion to mimic conditions of articulation disorder. There were more articulation errors in the modified session, but number of errors were decreased in the final half of the modified session; this suggests that articulation learning took place. The hemodynamic NIRS data revealed significant activation during articulation in the frontal, parietal, and temporal cortices. These areas are involved in phonological processing and articulation planning and execution, and included the following areas: (i) the ventral sensory-motor cortex (vSMC), including the Rolandic operculum, precentral gyrus, and postcentral gyrus, (ii) the dorsal sensory-motor cortex, including the precentral and postcentral gyri, (iii) the opercular part of the inferior frontal gyrus (IFGoperc), (iv) the temporal cortex, including the superior temporal gyrus, and (v) the inferior parietal lobe (IPL), including the supramarginal and angular gyri. The posterior Sylvian fissure at the parietal–temporal boundary (area Spt) was selectively activated in the modified session. Furthermore, hemodynamic activity in the IFGoperc and vSMC was increased in the final half of the modified session compared with its initial half, and negatively correlated with articulation errors during articulation learning in the modified session. The present results suggest an essential role of the frontal regions, including the IFGoperc and vSMC, in articulation learning, with sensory feedback through area Spt and the IPL. The present study provides clues to the underlying pathology and treatment of childhood apraxia of speech

    Brain Cortical Mapping by Simultaneous Recording of Functional Near Infrared Spectroscopy and Electroencephalograms from the Whole Brain During Right Median Nerve Stimulation

    Get PDF
    To investigate relationships between hemodynamic responses and neural activities in the somatosensory cortices, hemodynamic responses by near infrared spectroscopy (NIRS) and electroencephalograms (EEGs) were recorded simultaneously while subjects received electrical stimulation in the right median nerve. The statistical significance of the hemodynamic responses was evaluated by a general linear model (GLM) with the boxcar design matrix convoluted with Gaussian function. The resulting NIRS and EEGs data were stereotaxically superimposed on the reconstructed brain of each subject. The NIRS data indicated that changes in oxy-hemoglobin concentration increased at the contralateral primary somatosensory (SI) area; responses then spread to the more posterior and ipsilateral somatosensory areas. The EEG data indicated that positive somatosensory evoked potentials peaking at 22 ms latency (P22) were recorded from the contralateral SI area. Comparison of these two sets of data indicated that the distance between the dipoles of P22 and NIRS channels with maximum hemodynamic responses was less than 10 mm, and that the two topographical maps of hemodynamic responses and current source density of P22 were significantly correlated. Furthermore, when onset of the boxcar function was delayed 5–15 s (onset delay), hemodynamic responses in the bilateral parietal association cortices posterior to the SI were more strongly correlated to electrical stimulation. This suggests that GLM analysis with onset delay could reveal the temporal ordering of neural activation in the hierarchical somatosensory pathway, consistent with the neurophysiological data. The present results suggest that simultaneous NIRS and EEG recording is useful for correlating hemodynamic responses to neural activity

    [Nine-month observation of effects of SO2 on the respiratory system in child Miyakejima citizens].

    Get PDF
    BACKGROUND: Mt. Oyama on Miyakejima Island erupted in June 2000 and all Miyake village citizens were forced to evacuate the island in the September, due to continuous eruptions and emission of unsafe amounts of volcanic gas, mainly sulfur dioxide (SO2). Beginning in February 2005, residents returned to live on the island despite the fact that volcanic gas was still being emitted. OBJECTIVE: To examine changes in the respiratory systems of included children from February 2006 to November 2006. METHODS: The study population was 141 children who participated in health checkups in November 2006, including 33 SO2 hypersusceptible children who had a current or past history of asthma, obstructive lung function, current symptoms of whistling and wheezing, and/or deterioration of respiratory symptoms. Respiratory effects were evaluated by a questionnaire for respiratory symptoms and by spirometry. SO2 was monitored at 7 sampling points within inhabited areas, and the mean SO2 concentration from February 2005 to November 2006 was 0.031 ppm. The area was categorized into four areas by average SO2 concentration, namely, areas L, H-1, H-2, and H-3, where the average SO2 levels were 0.019, 0.026, 0.032, and 0.045 ppm, respectively. RESULTS: Compared to children in area L, the frequencies of "phlegm" and "irritation of the nose" were significantly greater in the children in areas H-2 and H-3. %FVC and %FEV1 in hypersusceptible children were significantly reduced in November 2006 as compared to February 2006 (P = 0.047, 0.027), though no reduction observed in normosusceptible children. CONCLUSION: Respiratory functions in hypersusceptible Miyakejima children may be affected by SO2 exposure, and further follow-up observation is necessary

    Effects of SO2 on respiratory system of adult Miyakejima resident 2 years after returning to the island.

    No full text
    BACKGROUND: Mt. Oyama in Miyakejima Island erupted in June, 2000. All Miyake villagers were forced to evacuate from the island in September, 2000, due to continuous eruptions and emissions of unsafe amounts of volcanic gas, mainly SO2. From February, 2005, Miyake villagers returned to the island despite volcanic gas still being emitted. OBJECTIVES: This study examines the 2-yr changes in Miyake residents' respiratory systems from autumn 2004 to November 2006. METHODS: The study population was 823 Miyake adult residents who participated in the health check-up in 2006. Respiratory effects were evaluated by a questionnaire for respiratory symptoms and spirometry. SO2 has been continuously monitored at 7 sampling points of the inhabited area. The mean SO2 concentration from February 2005 to November 2006 was 0.031 ppm. The area was categorized into 4 areas by SO2 concentration, namely, areas L, H-1, H-2 and H-3, where average SO2 concentrations were 0.019, 0.026, 0.032, and 0.045 ppm, respectively. RESULTS: The study subjects showed no deterioration in lung function. Prevalence of cough and phlegm among all participants were significantly higher in 2006 than in 2004, and age-, sex- and smoking-adjusted odds ratios of cough and phlegm were 1.75 (95%CI 1.33-2.30) and 1.44 (1.12-1.87). Prevalence of chronic bronchitis-like symptoms among normosusceptive subjects in 2006 was 4.1% which was significantly higher than that of 2.1% in 2004 (p=0.035). Compared to area L, the frequencies of phlegm and irritation of the nose were significantly increased in areas H-2 and H-3. CONCLUSION: SO2 exposure-related respiratory symptoms were observed in adult Miyakejima residents after returning to the island
    corecore