1,459 research outputs found
Tidal effects on magnetic gyration of a charged particle in Fermi coordinates
We examine the gyration motion of a charged particle, viewed from a reference
observer falling along the Z axis into a Schwarzschild black hole. It is
assumed that the magnetic field is constant and uniform along the Z axis, and
that the particle has a circular orbit in the X-Y plane far from the
gravitational source. When the particle as well as the reference observer
approaches the black hole, its orbit is disrupted by the tidal force. The final
plunging velocity increases in the non-relativistic case, but decreases if the
initial circular velocity exceeds a critical value, which is approximately
0.7c. This toy model suggests that disruption of a rapidly rotating star due to
a velocity-dependent tidal force may be quite different from that of a
non-relativistic star. The model also suggested that collapse of the orbit
after the disruption is slow in general, so that the particle subsequently
escapes outside the valid Fermi coordinates.Comment: 10 pages, 12 figure
Recommended from our members
Radiative impact of mixing state of black carbon aerosol in Asian outflow
The radiative impact of the mixing state of black carbon (BC) aerosol is investigated in Asian outflow. The mixing state and size distribution of BC aerosol were measured with a ground-based single-particle soot photometer at a remote island (Fukue) in Japan in spring 2007. The mass concentration of BC in Asian continental air masses reached 0.5 ÎŒg m-3, with a mass median diameter of 200-220 nm. The median value of the shell/core diameter ratio increased to âŒ1.6 in Asian continental and maritime air masses with a core diameter of 200 mn, while in free tropospheric and Japanese air masses it was 1.3-1.4. On the basis of theoretical calculations using the size distribution and mixing state of BC aerosol, scattering and absorption properties of PM1 aerosols were calculated under both dry and ambient conditions, considering the hygroscopic growth of aerosols. It was estimated that internal mixing enhanced the BC absorption by a factor of 1.5-1.6 compared to external mixing. The calculated absorption coefficient was 2-3 times higher in Asian continental air masses than in clean air. Coatings reduced the single-scattering albedo (SSA) of PM1 aerosol by 0.01 -0.02, which indicates the importance of the mixing state of BC aerosol in evaluating its radiative influence. The SSA was sensitive to changes in air mass type, with a value of âŒ0.98 in Asian continental air masses and âŒ0.95 in Japanese and free tropospheric air masses under ambient conditions. Copyright 2008 by the American Geophysical Union
Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations
We present a new methodology to analyze complicated multi-physics simulations
by introducing a fictitious parameter. Using the method, we study quantum
mechanical aspects of an organic molecule in water. The simulation is
variationally constructed from the ab initio molecular orbital method and the
classical statistical mechanics with the fictitious parameter representing the
coupling strength between solute and solvent. We obtain a number of
one-electron orbital energies of the solute molecule derived from the
Hartree-Fock approximation, and eigenvalue-statistical analysis developed in
the study of nonintegrable systems is applied to them. Based on the results, we
analyze localization properties of the electronic wavefunctions under the
influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc.
Jpn. Vol.76 (No.1
Longitudinal magnetic excitation in KCuCl3 studied by Raman scattering under hydrostatic pressures
We measure Raman scattering in an interacting spin-dimer system KCuCl3 under
hydrostatic pressures up to 5 GPa mediated by He gas. In the pressure-induced
quantum phase, we observe a one-magnon Raman peak, which originates from the
longitudinal magnetic excitationand is observable through the second-order
exchange interaction Raman process. We report the pressure dependence of the
frequency, halfwidth and Raman intensity of this mode.Comment: 4 pages, 3 figures, inpress in JPCS as a proceeding of LT2
Probing the close environment of massive young stars with spectro-astrometry
Aims: We test the technique of spectro-astrometry as a potential method to
investigate the close environment of massive young stars.
Method: Archival VLT near infrared K band spectra (R=8900) of three massive
young stellar objects and one Wolf-Rayet star are examined for
spectro-astrometric signatures. The young stellar objects display emission
lines such as Brackett gamma, CO 2-0 and CO 3-1 that are characteristic of
ionised regions and molecular disks respectively. Two of the sample sources
also display emission lines such as NIII and MgII that are characteristic of
high temperatures.
Results: Most of the emission lines show spectro-astrometric signal at
various levels resulting in different positional displacements. The shapes and
magnitudes of the positional displacements imply the presence of large
disk/envelopes in emission and expanding shells of ionised gas. The results
obtained for the source 18006-2422nr766 in particular provide larger estimates
(> 300AU) on CO emitting regions indicating that in MYSOs CO may arise from
inner regions of extended dense envelopes as well.
Conclusions: The overall results from this study demonstrate the utility of
spectro-astrometry as a potential method to constrain the sizes of various
physical entities such as disks/envelopes, UCHII regions and/or ionised shells
in the close environment of a massive young star.Comment: 4 pages, 4 figures, 1 tabl
New effective nuclear forces with a finite-range three-body term and their application to AMD+GCM calculations
We propose new effective inter-nucleon forces with a finite-range three-body
operator. The proposed forces are suitable for describing the nuclear structure
properties over a wide mass number region, including the saturation point of
nuclear matter. The forces are applied to microscopic calculations of
() nuclei and O isotopes with a method of antisymmetrized molecular
dynamics. We present the characteristics of the forces and discuss the
importance of the finite-range three-body term.Comment: 15 pages, 11 figures, submitted to Phys.Rev.
Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table
More than half a century after the fundamental, spherical shell structure in
nuclei has been established, theoretical predictions indicate that the
shell-gaps comparable or even stronger than those at spherical shapes may
exist. Group-theoretical analysis supported by realistic mean-field
calculations indicate that the corresponding nuclei are characterized by the
('double-tetrahedral') group of symmetry, exact or approximate. The
corresponding strong shell-gap structure is markedly enhanced by the existence
of the 4-dimensional irreducible representations of the group in question and
consequently it can be seen as a geometrical effect that does not depend on a
particular realization of the mean-field. Possibilities of discovering the
corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma
Collimation of a spherical collisionless particles stream in Kerr space-time
We examine the propagation of collisionless particles emitted from a
spherical shell to infinity. The number distribution at infinity, calculated as
a function of the polar angle, exhibits a small deviation from uniformity. The
number of particles moving from the polar region toward the equatorial plane is
slightly larger than that of particles in the opposite direction, for an
emission radius in extreme Kerr space-time. This means that the black
hole spin exerts an anti-collimation effect on the particles stream propagating
along the rotation axis. We also confirm this property in the weak field limit.
The quadrupole moment of the central object produces a force toward the
equatorial plane. For a smaller emission radius , the absorption of
particles into the black hole, the non-uniformity and/or the anisotropy of the
emission distribution become much more important.Comment: 11 pages, 8 figures; accepted for publication in CQ
Two dimensionality in quasi one-dimensional cobalt oxides
By means of muon spin rotation and relaxation (SR) techniques, we have
investigated the magnetism of quasi one-dimensional (1D) cobalt oxides
CoO (=Ca, Sr and Ba, =1, 2, 3, 5 and
), in which the 1D CoO chain is surrounded by six equally spaced
chains forming a triangular lattice in the -plane, using polycrystalline
samples, from room temperature down to 1.8 K. For the compounds with =1 - 5,
transverse field SR experiments showed the existence of a magnetic
transition below 100 K. The onset temperature of the transition () was found to decrease with ; from 100 K for =1 to 60 K for
=5. A damped muon spin oscillation was observed only in the sample with
=1 (CaCoO), whereas only a fast relaxation obtained even at 1.8
K in the other three samples. In combination with the results of susceptibility
measurements, this indicates that a two-dimensional short-range
antiferromagnetic (AF) order appears below for all
compounds with =1 - 5; but quasi-static long-range AF order formed only in
CaCoO, below 25 K. For BaCoO (=), as decreased
from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF
transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table
- âŠ