30 research outputs found

    Using spin to understand the formation of LIGO's black holes

    Full text link
    With the detection of four candidate binary black hole (BBH) mergers by the Advanced LIGO detectors thus far, it is becoming possible to constrain the properties of the BBH merger population in order to better understand the formation of these systems. Black hole (BH) spin orientations are one of the cleanest discriminators of formation history, with BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed isotropically, in contrast to isolated populations where stellar evolution is expected to induce BH spins preferentially aligned with the orbital angular momentum. In this work we propose a simple, model-agnostic approach to characterizing the spin properties of LIGO's BBH population. Using measurements of the effective spin of the binaries, which is LIGO's best constrained spin parameter, we introduce a simple parameter to quantify the fraction of the population that is isotropically distributed, regardless of the spin magnitude distribution of the population. Once the orientation characteristics of the population have been determined, we show how measurements of effective spin can be used to directly constrain the underlying BH spin magnitude distribution. Although we find that the majority of the current effective spin measurements are too small to be informative, with LIGO's four BBH candidates we find a slight preference for an underlying population with aligned spins over one with isotropic spins (with an odds ratio of 1.1). We argue that it will be possible to distinguish symmetric and anti-symmetric populations at high confidence with tens of additional detections, although mixed populations may take significantly more detections to disentangle. We also derive preliminary spin magnitude distributions for LIGO's black holes, under the assumption of aligned or isotropic populations

    Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood

    Get PDF
    The nutritional environment to which animals are exposed in early life can lead to epigenetic changes in the genome that influence the risk of obesity in later life. Here, we demonstrate that the fibroblast growth factor-21 gene (Fgf21) is subject to peroxisome proliferator-activated receptor (PPAR) α–dependent DNA demethylation in the liver during the postnatal period. Reductions in Fgf21 methylation can be enhanced via pharmacologic activation of PPARα during the suckling period. We also reveal that the DNA methylation status of Fgf21, once established in early life, is relatively stable and persists into adulthood. Reduced DNA methylation is associated with enhanced induction of hepatic FGF21 expression after PPARα activation, which may partly explain the attenuation of diet-induced obesity in adulthood. We propose that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity

    Increased Systemic Glucose Tolerance with Increased Muscle Glucose Uptake in Transgenic Mice Overexpressing RXRÎł in Skeletal Muscle

    Get PDF
    BACKGROUND: Retinoid X receptor (RXR) Îł is a nuclear receptor-type transcription factor expressed mostly in skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXRÎł in skeletal muscle (RXRÎł mice), which showed lower blood glucose than the control mice. Here we investigated their glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: RXRÎł mice were subjected to glucose and insulin tolerance tests, and glucose transporter expression levels, hyperinsulinemic-euglycemic clamp and glucose uptake were analyzed. Microarray and bioinformatics analyses were done. The glucose tolerance test revealed higher glucose disposal in RXRÎł mice than in control mice, but insulin tolerance test revealed no difference in the insulin-induced hypoglycemic response. In the hyperinsulinemic-euglycemic clamp study, the basal glucose disposal rate was higher in RXRÎł mice than in control mice, indicating an insulin-independent increase in glucose uptake. There was no difference in the rate of glucose infusion needed to maintain euglycemia (glucose infusion rate) between the RXRÎł and control mice, which is consistent with the result of the insulin tolerance test. Skeletal muscle from RXRÎł mice showed increased Glut1 expression, with increased glucose uptake, in an insulin-independent manner. Moreover, we performed in vivo luciferase reporter analysis using Glut1 promoter (Glut1-Luc). Combination of RXRÎł and PPARÎŽ resulted in an increase in Glut1-Luc activity in skeletal muscle in vivo. Microarray data showed that RXRÎł overexpression increased a diverse set of genes, including glucose metabolism genes, whose promoter contained putative PPAR-binding motifs. CONCLUSIONS/SIGNIFICANCE: Systemic glucose metabolism was increased in transgenic mice overexpressing RXRÎł. The enhanced glucose tolerance in RXRÎł mice may be mediated at least in part by increased Glut1 in skeletal muscle. These results show the importance of skeletal muscle gene regulation in systemic glucose metabolism. Increasing RXRÎł expression may be a novel therapeutic strategy against type 2 diabetes

    Identification of a novel uterine leiomyoma GWAS locus in a Japanese population

    Get PDF
    Uterine leiomyoma is one of the most common gynaecologic benign tumours, but its genetic basis remains largely unknown. Six previous GWAS identified 33 genetic factors in total. Here, we performed a two-staged GWAS using 13,746 cases and 70,316 controls from the Japanese population, followed by a replication analysis using 3,483 cases and 4,795 controls. The analysis identified 9 significant loci, including a novel locus on 12q23.2 (rs17033114, P = 6.12 × 10−25 with an OR of 1.177 (1.141-1.213), LINC00485). Subgroup analysis indicated that 5 loci (3q26.2, 5p15.33, 10q24.33, 11p15.5, 13q14.11) exhibited a statistically significant effect among multiple leiomyomas, and 2 loci (3q26.2, 10q24.33) exhibited a significant effect among submucous leiomyomas. Pleiotropic analysis indicated that all 9 loci were associated with at least one proliferative disease, suggesting the role of these loci in the common neoplastic pathway. Furthermore, the risk T allele of rs2251795 (3q26.2) was associated with longer telomere length in both normal and tumour tissues. Our findings elucidated the significance of genetic factors in the pathogenesis of leiomyoma

    Ontological Integration of Data Models for Cell Signaling Pathways by Defining a Factor of Causality Called `Signal'

    No full text
    Databases have collected masses of information concerning cell signaling pathways that includes information on pathways, molecular interactions as well as molecular complexes. However we have no general data model to represent comprehensive properties of cell signaling pathways, so that this type of information has been represented by two di#erent data models that we call `binary relation' and `state transition'. The disagreement between the existing models derives from lack of consensus about a factor of causality in reactions in cell signaling pathways, which is often called `signal'. We developed an ontology named CSNO (Cell Signaling Networks Ontology) based on device ontology
    corecore