8 research outputs found

    Analysis of a nuclease activity of catalytic domain of Thermus thermophilus MutS2 by high-accuracy mass spectrometry

    Get PDF
    Electrospray ionization with Fourier-transform ion cyclotron resonance mass spectrometry (ESI–FT ICR MS) is a powerful tool for analyzing the precise structural features of biopolymers, including oligonucleotides. Here, we described the detailed characterization of a newly discovered nuclease activity of the C-terminal domain of Thermus thermophilus MutS2 (ttMutS2). Using this method, the length, nucleotide content and nature of the 5′- and 3′-termini of the product oligonucleotides were accurately identified. It is revealed that the C-terminal domain of ttMutS2 incised the phosphate backbone of oligodeoxynucleotides non-sequence-specifically at the 3′ side of the phosphates. The simultaneous identification of the innumerable fragments was achieved by the extremely high-accuracy of ESI–FT ICR MS

    Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel “honeycomb tree structure” design via guiding bone matrix orientation

    Get PDF
    BACKGROUND CONTEXT: Therapeutic devices for spinal disorders, such as spinal fusion cages, must be able to facilitate the maintenance and rapid recovery of spinal function. Therefore, it would be advantageous that future spinal fusion cages facilitate rapid recovery of spinal function without secondary surgery to harvest autologous bone. PURPOSE: This study investigated a novel spinal cage configuration that achieves in vivo mechanical integrity as a devise/bone complex by inducing bone that mimicked the sound trabecular bone, hierarchically and anisotropically structured trabeculae strengthened with a preferentially oriented extracellular matrix. STUDY DESIGN/SETTINGS: In vivo animal study. METHODS: A cage possessing an anisotropic through-pore with a grooved substrate, that we termed “honeycomb tree structure,” was designed for guiding bone matrix orientation; it was manufactured using a laser beam powder bed fusion method through an additive manufacturing processes. The newly designed cages were implanted into sheep vertebral bodies for 8 and 16 weeks. An autologous bone was not installed in the newly designed cage. A pull-out test was performed to evaluate the mechanical integrity of the cage/bone interface. Additionally, the preferential orientation of bone matrix consisting of collagen and apatite was determined. RESULTS: The cage/host bone interface strength assessed by the maximum pull-out load for the novel cage without an autologous bone graft (3360±411 N) was significantly higher than that for the conventional cage using autologous bone (903±188 N) after only 8 weeks post-implantation. CONCLUSIONS: These results highlight the potential of this novel cage to achieve functional fusion between the cage and host bone. Our study provides insight into the design of highly functional spinal devices based on the anisotropic nature of bone. CLINICAL SIGNIFICANCE: The sheep spine is similar to the human spine in its stress condition and trabecular bone architecture and is widely recognized as a useful model for the human spine. The present design may be useful as a new spinal device for humans.Ishimoto T., Kobayashi Y., Takahata M., et al. Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel “honeycomb tree structure” design via guiding bone matrix orientation. Spine Journal, 22, 10, 1742. https://doi.org/10.1016/j.spinee.2022.05.006

    A novel single-stranded DNA-specific 3′–5′ exonuclease, Thermus thermophilus exonuclease I, is involved in several DNA repair pathways

    Get PDF
    Single-stranded DNA (ssDNA)-specific exonucleases (ssExos) are expected to be involved in a variety of DNA repair pathways corresponding to their cleavage polarities; however, the relationship between the cleavage polarity and the respective DNA repair pathways is only partially understood. To understand the cellular function of ssExos in DNA repair better, genes encoding ssExos were disrupted in Thermus thermophilus HB8 that seems to have only a single set of 5′–3′ and 3′–5′ ssExos unlike other model organisms. Disruption of the tthb178 gene, which was expected to encode a 3′–5′ ssExo, resulted in significant increase in the sensitivity to H2O2 and frequency of the spontaneous mutation rate, but scarcely affected the sensitivity to ultraviolet (UV) irradiation. In contrast, disruption of the recJ gene, which encodes a 5′–3′ ssExo, showed little effect on the sensitivity to H2O2, but caused increased sensitivity to UV irradiation. In vitro characterization revealed that TTHB178 possessed 3′–5′ ssExo activity that degraded ssDNAs containing deaminated and methylated bases, but not those containing oxidized bases or abasic sites. Consequently, we concluded that TTHB178 is a novel 3′–5′ ssExo that functions in various DNA repair systems in cooperation with or independently of RecJ. We named TTHB178 as T. thermophilus exonuclease I

    Efficacy and Safety of Daptomycin versus Vancomycin for Bacteremia Caused by Methicillin-Resistant Staphylococcus aureus with Vancomycin Minimum Inhibitory Concentration > 1 µg/mL: A Systematic Review and Meta-Analysis

    No full text
    This systematic review and meta-analysis compares the efficacy of daptomycin and vancomycin in adult patients with bacteremia by methicillin-resistant Staphylococcus aureus (MRSA) with vancomycin minimum inhibitory concentration (MIC) > 1 µg/mL. We searched the PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov databases on 12 May 2020. All-cause mortality (primary outcome) and treatment success rates were compared and subgroups stratified by infection source risk level and method of vancomycin susceptibility testing were also analyzed. Seven studies (n = 907 patients) were included in this efficacy analysis. Compared with vancomycin, daptomycin treatment was associated with significantly lower mortality (six studies, odds ratio (OR) 0.53, 95% confidence interval (CI) 0.29–0.98) and higher treatment success (six studies, OR 2.20, 95% CI 1.63–2.96), which was consistent regardless of the vancomycin MIC test method used. For intermediate-risk sources, daptomycin was a factor increasing treatment success compared with vancomycin (OR 4.40, 95% CI 2.06–9.40), and it exhibited a trend toward a higher treatment success rate for high-risk sources. In conclusion, daptomycin should be considered for the treatment of bacteremia caused by MRSA with vancomycin MIC > 1 µg/mL, especially in patients with intermediate- and high-risk bacteremia sources

    Efficacy and Safety of Daptomycin versus Vancomycin for Bacteremia Caused by Methicillin-Resistant <i>Staphylococcus</i> <i>aureus</i> with Vancomycin Minimum Inhibitory Concentration > 1 µg/mL: A Systematic Review and Meta-Analysis

    No full text
    This systematic review and meta-analysis compares the efficacy of daptomycin and vancomycin in adult patients with bacteremia by methicillin-resistant Staphylococcus aureus (MRSA) with vancomycin minimum inhibitory concentration (MIC) > 1 µg/mL. We searched the PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov databases on 12 May 2020. All-cause mortality (primary outcome) and treatment success rates were compared and subgroups stratified by infection source risk level and method of vancomycin susceptibility testing were also analyzed. Seven studies (n = 907 patients) were included in this efficacy analysis. Compared with vancomycin, daptomycin treatment was associated with significantly lower mortality (six studies, odds ratio (OR) 0.53, 95% confidence interval (CI) 0.29–0.98) and higher treatment success (six studies, OR 2.20, 95% CI 1.63–2.96), which was consistent regardless of the vancomycin MIC test method used. For intermediate-risk sources, daptomycin was a factor increasing treatment success compared with vancomycin (OR 4.40, 95% CI 2.06–9.40), and it exhibited a trend toward a higher treatment success rate for high-risk sources. In conclusion, daptomycin should be considered for the treatment of bacteremia caused by MRSA with vancomycin MIC > 1 µg/mL, especially in patients with intermediate- and high-risk bacteremia sources

    Extension of Improved Particle and Energy Confinement Regime in the Core of LHD Plasma

    No full text
    corecore