33,078 research outputs found
The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered
Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study.
Inferring feeding activities from undulations in diving depth profiles is widespread in studies of foraging marine predators. This idea, however, has rarely been tested because of practical difficulties in obtaining an independent estimate of feeding activities at a time scale corresponding to depth changes within a dive. In this study we attempted to relate depth profile undulations and feeding activities during diving in a single Chinstrap Penguin Pygoscelis antarctica, by simultaneously using a conventional time-depth recorder and a recently developed beak-angle sensor. Although failure in device attachments meant that data were obtained successfully from just a part of a single foraging trip, our preliminary results show a linear relationship between the number of depth wiggles and the number of underwater beakopening
events during a dive, suggesting that the relative feeding intensity of each dive could be represented by depth-profile data. Underwater beak-opening patterns of this krill-feeding penguin species are compared with recent data from three fish- and squid-feeding Magellanic Penguins Spheniscus magellanicus
Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6
We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized
their anisotropic behaviour through low field magnetic susceptibility,
field-dependent magnetization, resistivity and heat capacity measurements. The
Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit
a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique
effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order
anti-ferromagnetically with Neel temperatures above 450 K and the R ions'
magnetism appears to behave independently. The possible origins of this unusual
behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte
Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable
We study the classical simulatability of commuting quantum circuits with n
input qubits and O(log n) output qubits, where a quantum circuit is classically
simulatable if its output probability distribution can be sampled up to an
exponentially small additive error in classical polynomial time. First, we show
that there exists a commuting quantum circuit that is not classically
simulatable unless the polynomial hierarchy collapses to the third level. This
is the first formal evidence that a commuting quantum circuit is not
classically simulatable even when the number of output qubits is exponentially
small. Then, we consider a generalized version of the circuit and clarify the
condition under which it is classically simulatable. Lastly, we apply the
argument for the above evidence to Clifford circuits in a similar setting and
provide evidence that such a circuit augmented by a depth-1 non-Clifford layer
is not classically simulatable. These results reveal subtle differences between
quantum and classical computation.Comment: 19 pages, 6 figures; v2: Theorems 1 and 3 improved, proofs modifie
Bulk and surface low-energy excitations in YBa2Cu3O7-d studied by high-resolution angle-resolved photoemission spectroscopy
We have performed high-resolution angle-resolved photoemission spectroscopy
on YBa2Cu3O7-delta (Y123; delta = 0.06; Tc = 92 K). By accurately determining
the Fermi surface and energy band dispersion, we solve long-standing
controversial issues as to the anomalous electronic states of Y-based high-Tc
cuprates. We unambiguously identified surface-bilayer-derived bonding and
antibonding bands, together with their bulk counterparts. The surface bands are
highly overdoped (hole concentration x = 0.29), showing no evidence for the gap
opening or the dispersion anomaly in the antinodal region, while the bulk bands
show a clear dx2-y2-wave superconducting gap and the Bogoliubov
quasiparticle-like behavior with a characteristic energy scale of 50-60 meV
indicative of a strong electron-boson coupling in the superconducting state.
All these results suggest that the metallic and superconducting states coexist
at the adjacent bilayer of Y123 surface.Comment: Accepted for publication in Phys. Rev.
String Entanglement and D-branes as Pure States
We study the entanglement of closed strings degrees of freedom in order to
investigate the microscopic structure and statistics of objects as D-branes. By
considering the macroscopic pure state (MPS) limit, whenever the entanglement
entropy goes to zero (in such a way that the macroscopic properties of the
state are preserved), we show that boundary states may be recovered in this
limit and, furthermore, the description through closed string (perturbative)
degrees of freedom collapses. We also show how the thermal properties of branes
and closed strings could be described by this model, and it requires that
dissipative effects be taken into account. Extensions of the MPS analysis to
more general systems at finite temperature are finally emphasized.Comment: 14 pages. Minor improvements. Published in Phys. Rev.
Correlation length of the 1D Hubbard Model at half-filling : equal-time one-particle Green's function
The asymptotics of the equal-time one-particle Green's function for the
half-filled one-dimensional Hubbard model is studied at finite temperature. We
calculate its correlation length by evaluating the largest and the second
largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for
the genuinely fermionic nature of the one-particle Green's function, we employ
the fermionic formulation of the QTM based on the fermionic R-operator of the
Hubbard model. The purely imaginary value of the second largest eigenvalue
reflects the k_F (= pi/2) oscillations of the one-particle Green's function at
half-filling. By solving numerically the Bethe Ansatz equations with Trotter
numbers up to N=10240, we obtain accurate data for the correlation length at
finite temperatures down into the very low temperature region. The correlation
length remains finite even at T=0 due to the existence of the charge gap. Our
numerical data confirm Stafford and Millis' conjecture regarding an analytic
expression for the correlation length at T=0.Comment: 7 pages, 6 figure
Diverse Supernova Sources for the r-Process
(Abridged) It is shown that a semi-quantitative agreement with the gross
solar r-process abundance pattern near and above mass number A=130 can be
obtained by a superposition of two distinctive kinds of supernova r-process
events. These correspond to a low frequency case L and a high frequency case H,
which takes into account the low abundance of I129 and the high abundance of
Hf182 in the early solar nebula. The lifetime of Hf182 associates the events in
case H with the most common Type II supernovae. These events would be mainly
responsible for the r-process nuclei near and above A=195. They would also make
a significant amount of the nuclei between A=130 and 195, including Hf182, but
very little I129. In order to match the solar r-process abundance pattern and
to satisfy the I129 and Hf182 constraints, the events in case L, which would
make the r-process nuclei near A=130 and the bulk of those between A=130 and
195, must occur 10 times less frequently but eject 10--20 times more r-process
material in each event. We speculate that the usual neutron star remnants, and
hence prolonged ejection of r-process material, are associated with the events
in case L, whereas the more frequently occurring events in case H have ejection
of other r-process material terminated by black hole formation during the
neutrino cooling phase of the protoneutron star.Comment: 23 pages, AAS LATEX, 8 Postscript figure
Quantum Monte Carlo simulations of a particle in a random potential
In this paper we carry out Quantum Monte Carlo simulations of a quantum
particle in a one-dimensional random potential (plus a fixed harmonic
potential) at a finite temperature. This is the simplest model of an interface
in a disordered medium and may also pertain to an electron in a dirty metal. We
compare with previous analytical results, and also derive an expression for the
sample to sample fluctuations of the mean square displacement from the origin
which is a measure of the glassiness of the system. This quantity as well as
the mean square displacement of the particle are measured in the simulation.
The similarity to the quantum spin glass in a transverse field is noted. The
effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for
publication in J. of Physics A: Mathematical and Genera
- …