33,078 research outputs found

    The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Get PDF
    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered

    Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study.

    Get PDF
    Inferring feeding activities from undulations in diving depth profiles is widespread in studies of foraging marine predators. This idea, however, has rarely been tested because of practical difficulties in obtaining an independent estimate of feeding activities at a time scale corresponding to depth changes within a dive. In this study we attempted to relate depth profile undulations and feeding activities during diving in a single Chinstrap Penguin Pygoscelis antarctica, by simultaneously using a conventional time-depth recorder and a recently developed beak-angle sensor. Although failure in device attachments meant that data were obtained successfully from just a part of a single foraging trip, our preliminary results show a linear relationship between the number of depth wiggles and the number of underwater beakopening events during a dive, suggesting that the relative feeding intensity of each dive could be represented by depth-profile data. Underwater beak-opening patterns of this krill-feeding penguin species are compared with recent data from three fish- and squid-feeding Magellanic Penguins Spheniscus magellanicus

    Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6

    Full text link
    We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions' magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte

    Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable

    Full text link
    We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. First, we show that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is exponentially small. Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, we apply the argument for the above evidence to Clifford circuits in a similar setting and provide evidence that such a circuit augmented by a depth-1 non-Clifford layer is not classically simulatable. These results reveal subtle differences between quantum and classical computation.Comment: 19 pages, 6 figures; v2: Theorems 1 and 3 improved, proofs modifie

    Bulk and surface low-energy excitations in YBa2Cu3O7-d studied by high-resolution angle-resolved photoemission spectroscopy

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on YBa2Cu3O7-delta (Y123; delta = 0.06; Tc = 92 K). By accurately determining the Fermi surface and energy band dispersion, we solve long-standing controversial issues as to the anomalous electronic states of Y-based high-Tc cuprates. We unambiguously identified surface-bilayer-derived bonding and antibonding bands, together with their bulk counterparts. The surface bands are highly overdoped (hole concentration x = 0.29), showing no evidence for the gap opening or the dispersion anomaly in the antinodal region, while the bulk bands show a clear dx2-y2-wave superconducting gap and the Bogoliubov quasiparticle-like behavior with a characteristic energy scale of 50-60 meV indicative of a strong electron-boson coupling in the superconducting state. All these results suggest that the metallic and superconducting states coexist at the adjacent bilayer of Y123 surface.Comment: Accepted for publication in Phys. Rev.

    String Entanglement and D-branes as Pure States

    Full text link
    We study the entanglement of closed strings degrees of freedom in order to investigate the microscopic structure and statistics of objects as D-branes. By considering the macroscopic pure state (MPS) limit, whenever the entanglement entropy goes to zero (in such a way that the macroscopic properties of the state are preserved), we show that boundary states may be recovered in this limit and, furthermore, the description through closed string (perturbative) degrees of freedom collapses. We also show how the thermal properties of branes and closed strings could be described by this model, and it requires that dissipative effects be taken into account. Extensions of the MPS analysis to more general systems at finite temperature are finally emphasized.Comment: 14 pages. Minor improvements. Published in Phys. Rev.

    Correlation length of the 1D Hubbard Model at half-filling : equal-time one-particle Green's function

    Full text link
    The asymptotics of the equal-time one-particle Green's function for the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green's function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The purely imaginary value of the second largest eigenvalue reflects the k_F (= pi/2) oscillations of the one-particle Green's function at half-filling. By solving numerically the Bethe Ansatz equations with Trotter numbers up to N=10240, we obtain accurate data for the correlation length at finite temperatures down into the very low temperature region. The correlation length remains finite even at T=0 due to the existence of the charge gap. Our numerical data confirm Stafford and Millis' conjecture regarding an analytic expression for the correlation length at T=0.Comment: 7 pages, 6 figure

    Diverse Supernova Sources for the r-Process

    Get PDF
    (Abridged) It is shown that a semi-quantitative agreement with the gross solar r-process abundance pattern near and above mass number A=130 can be obtained by a superposition of two distinctive kinds of supernova r-process events. These correspond to a low frequency case L and a high frequency case H, which takes into account the low abundance of I129 and the high abundance of Hf182 in the early solar nebula. The lifetime of Hf182 associates the events in case H with the most common Type II supernovae. These events would be mainly responsible for the r-process nuclei near and above A=195. They would also make a significant amount of the nuclei between A=130 and 195, including Hf182, but very little I129. In order to match the solar r-process abundance pattern and to satisfy the I129 and Hf182 constraints, the events in case L, which would make the r-process nuclei near A=130 and the bulk of those between A=130 and 195, must occur 10 times less frequently but eject 10--20 times more r-process material in each event. We speculate that the usual neutron star remnants, and hence prolonged ejection of r-process material, are associated with the events in case L, whereas the more frequently occurring events in case H have ejection of other r-process material terminated by black hole formation during the neutrino cooling phase of the protoneutron star.Comment: 23 pages, AAS LATEX, 8 Postscript figure

    Quantum Monte Carlo simulations of a particle in a random potential

    Full text link
    In this paper we carry out Quantum Monte Carlo simulations of a quantum particle in a one-dimensional random potential (plus a fixed harmonic potential) at a finite temperature. This is the simplest model of an interface in a disordered medium and may also pertain to an electron in a dirty metal. We compare with previous analytical results, and also derive an expression for the sample to sample fluctuations of the mean square displacement from the origin which is a measure of the glassiness of the system. This quantity as well as the mean square displacement of the particle are measured in the simulation. The similarity to the quantum spin glass in a transverse field is noted. The effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for publication in J. of Physics A: Mathematical and Genera
    corecore