673 research outputs found

    Adversarial Patch Attacks on Monocular Depth Estimation Networks

    Get PDF
    Thanks to the excellent learning capability of deep convolutional neural networks (CNN), monocular depth estimation using CNNs has achieved great success in recent years. However, depth estimation from a monocular image alone is essentially an ill-posed problem, and thus, it seems that this approach would have inherent vulnerabilities. To reveal this limitation, we propose a method of adversarial patch attack on monocular depth estimation. More specifically, we generate artificial patterns (adversarial patches) that can fool the target methods into estimating an incorrect depth for the regions where the patterns are placed. Our method can be implemented in the real world by physically placing the printed patterns in real scenes. We also analyze the behavior of monocular depth estimation under attacks by visualizing the activation levels of the intermediate layers and the regions potentially affected by the adversarial attack.Comment: Publisher's Open Access PDF with the CC-BY copyright. Associated video, data and programs are available at https://www.fujii.nuee.nagoya-u.ac.jp/Research/MonoDepth

    Development of Space Truss Structure Using Glass Fiber Reinforced Plastics

    Get PDF
    This paper describes the development of a space truss structure using Glass Fiber Reinforced Plastic (GFRP) pipe that decreases life cycle cost and enhances construction efficiency. Material tests, structural experiments and FEM analysis verify the practicality of this structural system

    Borehole water and hydrologic model around the Nojima fault, SW Japan

    Get PDF
    International audienceThe active fault drilling at Nojima Hirabayashi after the 1995 Hyogoken-nanbu (Kobe) earthquake (MJMA = 7.2) provides us with a unique opportunity to investigate subsurface fault structure and the in-situ properties of fault and fluid. The borehole intersected the fault gouge of the Nojima fault at a depth interval of 623m to 625m. The lithology is mostly Cretaceous granodiorite with some porphyry dikes. The fault core is highly permeable due to fracturing. The borehole water was sampled in 1996 and 2000 from the depth interval between 630 and 650 m, just below the fault core. The chemical and isotopic compositions were analyzed. Carbon and oxygen isotope ratios of carbonates from the fault core were analyzed to estimate the origin of fluid. The following conclusions were obtained. (1) The ionic and isotopic compositions of borehole water did not change from 1996 to 2000. They are mostly derived from local ground water as mentioned by Sato and Takahashi (2000). (2) Geochemical speciation revealed that the borehole water was derived from a relatively deep reservoir, which may be situated at a depth of 3 to 4 km where the temperature is about 80-90 ̊C. (3) The shallower part of the Nojima fault (shallower than the reservoir depth) has not been healed from the hydrological viewpoints 5 years after the event, in contrast to the rapid healing detected by S wave splitting (Tadokoro and Ando, 2002). (4) Precipitation of calcite from present borehole water since drilling supports the idea of precipitation of some calcite in coseismic hydraulic fractures in the fault core (Boullier et al., 2004). (5) Carbon and oxygen isotope ratios of calcite indicated that the meteoric water flux had been localized at the fault core. (6) A difference in the carbon isotope ratio between the footwall and the hangingwall suggests that the fault has been acted as a hydrologic barrier, although the permeability along the fault is still high

    A presumed human nuclear autoantigen that translocates to plasma membrane blebs during apoptosis

    Get PDF
    金沢大学医薬保健研究域薬学系The structure and subcellular localization of a number of molecules change during apoptosis. These molecules are recognized by the immune system, leading to the development of autoimmunity when apoptotic cells fail to be effectively cleared by phagocytosis. We searched for such molecules by analyzing sera from 12 individuals who suffered from autoimmune diseases and from 3 patients with amyotrophic lateral sclerosis. One serum sample, designated 681, detected an antigen that fulfilled the above criteria. In Western blotting of lysates of human Jurkat T cells, the 681 antigen appeared as a distinct signal with a molecular mass of 60 kDa in normal cells, and 2 additional signals with faster mobilities were detected in apoptotic cells. The results of subcellular fractionation and immunofluorescence experiments revealed this antigen to be strictly localized in the nucleus of normal cells, but to be translocated to a region near the plasma membrane, to membrane blebs in particular, after the induction of apoptosis. Under conditions in which membrane blebbing was inhibited in apoptotic cells, the antigen still moved away from the nucleus, but its accumulation at the periplasmic region was completely abolished. The apparent partial cleavage and intracellular redistribution of the 681 antigen in apoptotic cells mimics changes previously reported for the nuclear autoantigen La, but the 681 antigen was clearly distinct from La. These results suggest that cleavage-dependent exit from the nucleus during apoptosis is a phenomenon common to nuclear autoantigens

    The Kago low-sulfidation gold and silver deposit: a peripheral mineralisation to the Nansatsu high-sulfidation system, southern Kyushu, Japan

    Get PDF
    The Kago deposit is a small deposit located at the southern tip of the Satsuma Peninsula of Southern Kyushu, Japan. It lies proximal to the well-known Nansatsu-type mineralisation province dominated by high-sulfidation type epithermal deposits. The deposit was heavily mined in the 18 th Century, largely for its relatively higher gold compared to that of surrounding and regional deposits. The Kago deposit is a typical low-sulfidation deposit, characterised by adularia-quartz veins, composed of electrum, Ag-tetrahedrite, polybasite, chalcopyrite and pyrite. Based on mine records, the grade ranged from 4.1 to 13.3 g/t Au and 2.6–6.6 g/t Ag. Alteration grades from low to high temperature argillic into a propylitic zone at the extremes of the vein exposures. Carbonate is absent. Fluid inclusion microthermometry reveals a typical temperature range of 220–240 °C with salinity of 0.7–2.6 NaCl eq. wt%. Electrum from high-grade ore ranges from 66 to 69 wt% Au. 40Ar/39Ar age dating of adularia bearing colloform/crustiform and brecciated veins, suggests a mineralisation event from 4.23 to 4.0 Ma. δ18O of veined and silicified quartz ranges from +4.0 to +18.4‰. δ18OH2O of fluids in equilibrium with quartz, in the dominant range of measured fluid inclusion temperatures, ranges from −6.5‰ to −0.2‰. δ34S of pyrite has a narrow range from −1.8 to 2.7‰. The deposit lies at the northern extent of the classic Nansatsu high-sulfidation epithermal area, in which a number of silicified bodies punctuate the region in a roughly semi-circular shape. The Kago deposit lies within the principle mineralisation age range of the high-sulfidation deposits, which range from 5.5 to 3.7 Ma. The structural displacement of the Kago deposit from the Nansatsu mineralisation and the differing host rocks has greatly influenced alteration, ore and rock-water interaction of the ore depositing fluids. Here we seek to establish the relationship that this extended mineral province has between the differing styles of mineralisation

    Tonic B cell activation by Radioprotective105/MD-1 promotes disease progression in MRL/lpr mice

    Get PDF
    Toll-like receptors (TLRs) have a crucial role in sensing microbial products and triggering immune responses. Recent reports have indicated that TLR7 and TLR9 have an important role in activating autoreactive B cells. In addition to TLR7 and TLR9, mouse B cells express TLR2, TLR4 and structurally related Radioprotective105 (RP105). We have previously shown that RP105 works in concert with TLR2/4 in antibody response to TLR2/4 ligands. We here report that B cells are constitutively activated by TLR2/4 and RP105. Such B cell activation was revealed by the γ3 germ line transcript and serum IgG3 production, both of which were impaired by the lack of RP105 or TLR2/4. Serum IgG3 was not altered in germ-free or antibiotics-treated mice, suggesting that the microbial flora hardly contributes to the continuous activation of B cells. The lack of RP105-dependent B cell activation ameliorated disease progression in lupus-prone MRL/lpr mice. RP105−/− MRL/lpr mice showed less lymphoadenopathy/splenomegaly and longer survival than MRL/lpr mice. Whereas glomerulonephritis and auto-antibody production were not altered, improvement in blood urea nitrogen and lower incidence of renal arteritis indicated that renal function was ameliorated in the absence of RP105. Our results suggest that RP105-dependent tonic B cell activation has a pathogenic role in MRL/lpr mic

    Long-distance single photon transmission from a trapped ion via quantum frequency conversion

    Get PDF
    Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10kmtransmitted photons, as well as the preservation of the photons’ temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation
    corecore