544 research outputs found

    On the continuity of the magnetizing current density in 3-D magnetic field analysis with edge element

    Get PDF
    The effects of the continuity of the magnetizing current density on the convergence of the incomplete Cholesky conjugate gradient method and the accuracy of the calculated flux densities are investigated by imposing different continuity conditions for both nodal and edge elements. It is shown that the continuity condition should be imposed precisely in the case of edge elements </p

    Generation of Alfven Waves by Magnetic Reconnection

    Full text link
    In this paper, results of 2.5-dimensional magnetohydrodynamical simulations are reported for the magnetic reconnection of non-perfectly antiparallel magnetic fields. The magnetic field has a component perpendicular to the computational plane, that is, guide field. The angle theta between magnetic field lines in two half regions is a key parameter in our simulations whereas the initial distribution of the plasma is assumed to be simple; density and pressure are uniform except for the current sheet region. Alfven waves are generated at the reconnection point and propagate along the reconnected field line. The energy fluxes of the Alfven waves and magneto-acoustic waves (slow mode and fast mode) generated by the magnetic reconnection are measured. Each flux shows the similar time evolution independent of theta. The percentage of the energies (time integral of energy fluxes) carried by the Alfven waves and magneto-acoustic waves to the released magnetic energy are calculated. The Alfven waves carry 38.9%, 36.0%, and 29.5% of the released magnetic energy at the maximum (theta=80^\circ) in the case of beta=0.1, 1, and 20 respectively, where beta is the plasma beta (the ratio of gas pressure to magnetic pressure). The magneto-acoustic waves carry 16.2% (theta=70^\circ), 25.9% (theta=60^\circ), and 75.0% (theta=180^\circ) of the energy at the maximum. Implications of these results for solar coronal heating and acceleration of high-speed solar wind are discussed.Comment: Accepted for publication in PASJ. 24 pages, 11 figure

    Practical analysis of 3-D dynamic nonlinear magnetic field using time-periodic finite element method

    Get PDF
    A practical 3-D finite element method using edge elements for analyzing stationary nonlinear magnetic fields with eddy currents in electric apparatus, in which the flux interlinking the voltage winding is given, has been proposed. The method is applied to the analysis of magnetic fields in the Epstein frame </p

    RXTE Observations of the Low-Mass X-Ray Binary 4U 1608-522 in Upper-Banana State

    Get PDF
    To investigate the physics of mass accretion onto weakly-magnetized neutron stars, 95 archival RXTE datasets of an atoll source 4U 1608-522, acquired over 1996-2004 in so-called upper-banana state, were analyzed. The object meantime exhibited 3-30 keV luminosity in the range of <~ 10^35 - 4 x 10^37 erg s^-1, assuming a distance of 3.6 kpc. The 3-30 keV PCA spectra, produced one from each dataset, were represented successfully with a combination of a soft and a hard component, of which the presence was revealed in a model-independent manner by studying spectral variations among the observations. The soft component is expressed by so-called multi-color disk model with a temperature of ~1.8 keV, and is attributed to the emission from an optically-thick standard accretion disk. The hard component is a blackbody emission with a temperature of ~2.7 keV, thought to be emitted from the neutron-star surface. As the total luminosity increases, a continuous decrease was observed in the ratio of the blackbody luminosity to that of the disk component. This property suggests that the matter flowing through the accretion disk gradually becomes difficult to reach the neutron-star surface, presumably forming outflows driven by the increased radiation pressure. On time scales of hours to days, the overall source variability was found to be controlled by two independent variables; the mass accretion rate, and the innermost disk radius which changes both physically and artificially.Comment: ApJ accepted, 29 pages, 9 figure

    ASCA Observations of the Central Regions of M31

    Full text link
    Using ASCA, spatially integrated X-ray spectra of the central regions of M31 were studied. Data were accumulated over three different circular regions, with the radii of 3', 6' and 12', all centered on the nucleus. The spectra are relatively similar among the three regions. In the energy range above 1.5 keV, the spectra are reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of low-mass X-ray binaries. In energies below 1.5 keV, the spectra involves two additional softer components, expressed with thin-thermal plasma emission models of temperatures ~ 0.9 keV and ~ 0.3 keV. Over the central 12' (2.4 kpc) region and in the 0.5-10 keV energy band, the binary component has a luminosity of 2.6 x 10^{39} erg/s, while the two softer components both exhibit luminosities of ~ 2 x 10^{38} erg/s. These results are compared with those from other missions, including Chandra and XMM-Newton in particular. Discussion is made on the nature of the two softer spectral components besides the binary one.Comment: 12 pages, 8 figures and 5 tables; uses pasj00.cls; accepted for Publications of the Astronomical Society of Japa

    Suzaku Discovery of a Hard X-Ray Tail in the Persistent Spectra from the Magnetar 1E 1547.0-5408 during its 2009 Activity

    Full text link
    The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.Comment: 12 pages, 7 figures, PASJ Vol.62 No.2 accepte

    Iron Emission Lines on the Galactic Ridge Observed with Suzaku

    Full text link
    In order to elucidate origin of the Galactic Ridge X-ray Emission, we analyzed Suzaku data taken at various regions along the Galactic plane and studied their Fe-K emission line features. Suzaku resolved the Fe line complex into three narrow lines at ~6.4 keV,~6.7 keV and ~6.97 keV, which are K-lines from neutral (or low-ionized), He-like, and H-like iron ions, respectively. The 6.7 keV line is clearly seen in all the observed regions and its longitudinal distribution is consistent with that determined from previous observations. The 6.4 keV emission line was also found in various Galactic plane regions (b~0). Differences in flux ratios of the 6.4 keV/6.7 keV and 6.97 keV/6.7 keV lines between the Galactic plane and the Galactic center regions are studied and its implication is discussed.Comment: Accepted for publication in PASJ Suzaku 3rd special issu
    • …
    corecore