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Abstract - The effects of the continuity of the 
magnetizing current density on the convergence of 
the incomplete Cholesky conjugate gradient 
method and the accuracy of the calculated flux 
densities are investigated by imposing different 
continuity conditions for both nodal and edge 
elements. It is shown that the continuity condition 
should be imposed precisely in the case of edge 
elements. 
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I .  INTRODUCTION 

Recently, the  edge element[l-51 has  drawn the  
attention of many researchers. When applying the 
edge element to the analysis of magnetic fields in 
electrical machines, it was found accidentally that .  
the ICCG methodC61, which is an iterative solver 
for linear equations, is considerably more sensitive 
to the  continuity of the  magnetizing current  
density. In fact, the  ICCG solver provides no 
convergent solution in the case of the edge element, 
if the current continuity is not sufficient [71. 

In this paper, the effects of the continuity of the 
magnetizing current density on the convergence of 
the  ICCG method and the  accuracy of the  
calculated flux densities a re  investigated by 
imposing different continuity conditions. A method 
for imposing exactly the continuity condition in a 
winding of complicated shape, is also discussed, in 
which t h e  c u r r e n t  vector  po ten t i a l  i s  
introduced [8,91. 

11. SIGNIFICANCE OF CONTINUITY OF 
MAGNETIZING CURRENT DENSITY 

Fig. 1 shows the 3-D model used for investigation. 
The whole region is discretized into brick elements. 
In the straight parts except the corners shaded in 
the coil, the  magnetizing current density J o  has  
only one (x- or  y-) component, and satisfies the 
following continuity condition : 

( 1) div Jo = 0 . 

In order to examine the effect of the continuity 
condition, the distribution of Jo is changed in the 
corners as  shown in Table I, in which the cases (a) 
and (b) satisfy (1) while the cases (c)-(e) do not 
satisfy (1). When the edge element is used, the x- 
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Fig.1 Model for investigation. 
Table I Distribution of magnetizing 

current densitv in corner 
current 
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JO : magnitude of magnetizing current 
density in straight parts except 
corners shaded in Fig. 1 
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and y-components of Jo, Jox and Joy, are specified 
on edges parallel to the x- and y-axes respectively 
in all cases. When the nodal element is used, they 
are specified at each node in the cases (a) and (c)- 
(e). In  the case (b) for the nodal element, they are 
specified at the center of gravity in each element. 
In the elements located on a diagonal line at x = y, 
J o x  and  Joy a r e  equal to -Jo/2 and  Jo/2 
respectively, where Jo is the magnitude of Jo in the 
straight parts.  The magnitude of Jo in those 
elements is equal to J o l f i .  In the other regions of 
x > y  and x c y ,  (Jox, Joy) is equal to (0, J o )  and (- 
J o , O )  respectively. Such distributions of Jo can be 
obtained by introducing t h e  current  vector 
potential To[81. A method for calculating the  
distribution of Jo from To is discussed later. 

Fig.2 shows the distributions of the flux density 
vectors computed by the ungauged magnetic vector 
potential formulation [71. The vectors on the x-z and 
y-z planes are plotted. Only the distributions for 
the cases (b) (div Jo = 0 ) and (c) (div Jo z 0 ) are  
illustrated, because the distributions of the cases 
(a) and (b), and the cases (c)-(e) show a similar 
tendency in each group. When div Jo z 0, linear 
equations for t he  edge element are  solved by 
Gaussian elimination instead of the ICCG method, 
because convergent solutions cannot be obtained by 
the ICCG method. In the case of nodal elements, 
however, the convergent solutions are obtainable 
for all cases by the ICCG method. When the nodal 
element is used, the distributions with d ivJo#O 
are similar to those with div Jo = 0. I t  is obvious 
that  the distribution with div Jo # 0 obtained with 
edge elements has  no physical meaning as shown in 
Fig. 2(ii). 

Fig.3 shows the  z-component BZ of the flux 
density along the z-axis. BZ at z=Omm obtained 
with edge elements is normalized t o  unity. The 
results for cases (a) and (b) satisfying (1) are  
almost the same. The results for cases (c)-(e) 
(div Jo z 0 ) are  different from those for cases (a) 
and (b). The discrepancy between the result with 
div Jo = 0 and that  with div Jo f 0 depends on the 
size of the discontinuous region. 

111. " I ' H O D  FOR CALCULATING CURRENT 
DISTRIBUTION 

A method for imposing exactly the continuity 
condition of the magnetizing current density, has  
been discussed in[8,91. Jo ran be written in terms 
of the current vector potential To : 

Jo = r o t  To . (2) 

To is defined only in the region of the windings. 
When the eddy current in the winding can be 

neglected, the electric field intensity Eo satisfies 

the following equation : 

rot  Eo = 0 (3) 

The governing equation for To is obtained from 
(21, (3) and Ohm's law ( E o  = p J o ,  p : resistivity) as 
follows : 

rot  ( p rot  To 1 = 0 . (4) 

Equation(4) h a s  t h e  same expression as the 
governing equation for the A method, which uses 
the magnetic vector potential A and the reluctivity 
v instead of To and p. Therefore, i t  is not necessary 
to develop a new code. 

Dirichlet boundary conditions, which a r e  
required to solve (4), can be determined easily from 
the following equation : 

The  current  I passing through t h e  a r e a  S 
surrounded by the closed loop c in the winding can 
be represented by a function of To. When the scalar 
variable To is defined as a line integration of a 
projection of To on a n  edge[4,5], the current I can 
be written as the summation of To's. Equation ( 5 )  

for the current I f!) shown in Fig. 4 is given by 

When 1:") passing through a facet i in an  edge 
element (e) is specified, Dirichlet boundary 
conditions can be calculated. 

If the currents in all facets are specified, all To's 
can be determined. In  such a case, i t  is not 
necessary to solve (4). 

IV. EXAMPLE OF APPLICATION 

In order t o  illustrate t he  effectiveness of t he  
method mentioned above, the current distribution 
in a practical model shown in Fig.5 is calculated, 
which is used as a magnetizing winding in a flat 
motor. The thickness and the number of turns  of 
the winding are 0.5" and 30 respectively. The 
current densities a re  nearly uniform, because the 
winding is  composed of thin conductors. As the 
dr iving torque is calculated from J o x B  
( J o  : magnetizing current density, B : flux density 1, 
the current distribution should be imposed with 
high accuracy. As the winding is assumed to be a 
massive conductor, t he  current distribution is  
considerably affected by the electric path length. 

Table I1 shows the  boundary conditions. The 
boundaries are classified in two groups ( I zO and 
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0 div J ,  = 0 ( case (b) 1 

div J, f 0 ( case (c) ) 
(i) nodal element (ii) edge element 

Fig.2 Distributions of flux density vectors. 
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Fig.3 Z-component of flux density along z-axis. Fig.4 Definitions of To and I. 
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boundary 
condition 

I = O )  by the  cur ren t  passing through t h e  
boundaries. Jo  is parallel to  the boundaries with 
I = 0. To's on all boundaries are prescribed from (6). 
Under the  boundary condition B, To's on the 
internal boundaries (a2-fl2, a3-fl3, a4-fl4, a6435 and 
a 6 - P ~ )  are  given so tha t  the  current flow can 
approach to the actual pattern. 

Fig. 6 shows the  cur ren t  distribution. The 
distribution for the boundary condition B is much 
more uniform than that for the condition A because 
the  condition B puts the  additional Dirichlet 
boundaries inside the model a s  shown in Fig. 5 and 
Table 11. 

current passing through boundary 

I#O I = O  

V. CONCLUSIONS 

The results obtained can be summarized a s  

When edge elements are used, the continuity 
follows : 

condition should be imposed rigorously. 
Otherwise, the ICCG method cannot provide 
a convergent solution. If Gaussian elimination 
method is applied to  such a case, the obtained 
magnetic field distribution has  no physical 
meaning. 
The nodal element i s  not sensitive to  the 
continuity condition. Even in the case when 
the continuity of the magnetizing current 
density is  not sufficient, a convergent solution 
can be  obtained. Of course, if t h e  
discontinuous region is wide, the solution has 
no meaning. 
The uniform current distribution can be 
obtained easily by pu t t ing  Dirichlet  
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