26 research outputs found

    DNA binding and intercalation by novel porphyrins: role of charge and substituents probed by DNase I footprinting and topoisomerase I unwinding

    Get PDF
    AbstractPorphyrins carrying four charged sidechains, e.g., meso-tetrakis[4-N-methylpyridiniumyl]- and meso-tetrakis[4-N-(2-hydroxyethyl)pyridiniumyl]-porphyrin, bound and intercalated similarly into DNA as measured by helix stabilization and DNA unwinding studies in the presence of DNA topoisomerase I. Despite their different bulky sidechains, these complexes gave essentially identical DNase I footprinting patterns. In contrast, tetrasubstituted porphyrins carrying three phenyl rings and a single positively charged pyridiniumyl sidechain did not intercalate and exhibited little affinity for DNA. Thus, the presence of charged sidechains on the porphyrin rather than their identity appears to be critical for efficient DNA intercalation. The results are discussed in regard to current models for the porphyrin-DNA intercalation complex

    Effectiveness of spatial analysis in Cryptomeria japonica D. Don (sugi) forward selection revealed by validation using progeny and clonal tests

    Get PDF
    International audienceAbstractKey messageAccurate evaluation of genetic performances of trees is crucial in order to improve the efficiency of forest tree breeding. We revealed that spatial analysis is effective for predicting individual tree breeding values at the forward selection stage ofCryptomeria japonicaD. Don (sugi) breeding program by using a novel validation approach.ContextIn the process of selecting genetically superior trees for breeding, appropriate handling of environmental effects is important in order to precisely evaluate candidate trees. Spatial analysis has been an effective statistical approach for genetic evaluation at sites with heterogeneous microenvironments. However, the efficiency of spatial analysis on forward selection has not been validated on a practical scale to date.AimsThis study aimed to reveal the effectiveness of spatial analysis, which incorporates spatially autocorrelated residuals into mixed models, for the prediction of breeding values at the forward selection stage by validation using progeny or clonal tests of forward-selected individuals.MethodsTree height was analyzed by ordinary randomized complete block design models and spatial models incorporating spatially autocorrelated residuals in a linear mixed model framework, and model selection was conducted at thirty Cryptomeria japonica D. Don breeding population sites having various topographical ruggedness. For validation, three clonal tests and one progeny test of individuals selected from three and four breeding populations, respectively, were used. The effectiveness of forward selection using the two models was evaluated based on the correlation between individual breeding values at the stage of forward selection and genotypic and breeding values that were estimated by clonal and progeny tests.ResultsSpatial models were more predictive than ordinary models in all cases. Spatial correlation parameters tend to increase with the topographical ruggedness index of each site. The correlation coefficients between breeding values at the time of forward selection and genotypic or breeding values evaluated in succeeding clonal and progeny tests were significantly higher in spatial models than in ordinary models in six out of nine cases.ConclusionValidation using progeny and clonal tests of forward-selected individual trees revealed that spatial analysis is more effective for the evaluation of genetic performance of individuals at the stage of forward selection in Cryptomeria japonica

    Potential of Genome-Wide Studies in Unrelated Plus Trees of a Coniferous Species, Cryptomeria japonica (Japanese Cedar)

    Get PDF
    A genome-wide association study (GWAS) was conducted on more than 30,000 single nucleotide polymorphisms (SNPs) in unrelated first-generation plus tree genotypes from three populations of Japanese cedar Cryptomeria japonica D. Don with genomic prediction for traits of growth, wood properties and male fecundity. Among the assessed populations, genetic characteristics including the extent of linkage disequilibrium (LD) and genetic structure differed and these differences are considered to be due to differences in genetic background. Through population-independent GWAS, several significant SNPs found close to the regions associated with each of these traits and shared in common across the populations were identified. The accuracies of genomic predictions were dependent on the traits and populations and reflected the genetic architecture of traits and genetic characteristics. Prediction accuracies using SNPs selected based on GWAS results were similar to those using all SNPs for several combinations of traits and populations. We discussed the application of genome-wide studies for C. japonica improvement

    Coordinated voltage control of three-phase step voltage regulators and smart inverters to improve voltage profile and energy efficiency in unbalanced distribution networks

    No full text
    This paper proposes a coordinated voltage control by three-phase step voltage regulators (3ϕSVRs) and photovoltaic (PV) units with smart inverters. An optimization problem is formulated to improve the voltage profile of distribution networks and reduce the active power curtailment of PVs. The tap positions of 3ϕSVRs and the active and reactive power output of PVs are coordinated by whale optimization algorithm. The effectiveness of the proposed approach is verified by case studies on the IEEE 123 node test feeder. The results show that the proposed approach achieves lower voltage unbalance while avoiding excessive PV curtailment, improving utility, consumer, and environmental benefits
    corecore