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A genome-wide association study (GWAS) was conducted on more than 30,000 single
nucleotide polymorphisms (SNPs) in unrelated first-generation plus tree genotypes
from three populations of Japanese cedar Cryptomeria japonica D. Don with genomic
prediction for traits of growth, wood properties and male fecundity. Among the assessed
populations, genetic characteristics including the extent of linkage disequilibrium (LD)
and genetic structure differed and these differences are considered to be due to
differences in genetic background. Through population-independent GWAS, several
significant SNPs found close to the regions associated with each of these traits and
shared in common across the populations were identified. The accuracies of genomic
predictions were dependent on the traits and populations and reflected the genetic
architecture of traits and genetic characteristics. Prediction accuracies using SNPs
selected based on GWAS results were similar to those using all SNPs for several
combinations of traits and populations. We discussed the application of genome-wide
studies for C. japonica improvement.

Keywords: Cryptomeria japonica, first-generation plus trees, genomic prediction, genome-wide association
study (GWAS), linkage disequilibrium, population structure, unrelated genotypes

INTRODUCTION

Elucidating genetic control of various objective traits of forest trees enables increased economic
efficiency of forestry, improved quality of forest products and provides direction for meeting
societal expectations regarding environmental issues. Due to the long time to maturation for
forest tree species, evaluation of traits and breeding and phenotyping strategies are cost- and
time-prohibitive, while genome-wide studies including genome-wide association study (GWAS)
and genomic selection (GS) strategies are innovative, attractive and effective methodologies
(Grattapaglia and Resende, 2011; Iwata et al., 2011; Uchiyama et al., 2013). With the development of
technologies for high-throughput sequencing and genotyping for markers such as single nucleotide
polymorphisms (SNPs), these methodologies are becoming possible. GWAS enables detection of
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quantitative trait loci (QTL) or causal genes from the association
between genome-wide markers and phenotypes of target traits
and outperforms bi-parental QTL mapping because GWAS does
not require the development of segregating populations. GS
predicts individual genetic merit using a large number of DNA
markers such as SNPs (Meuwissen et al., 2001). GS promises to
significantly reduce the time needed to achieve animal and crop
improvement by skipping the time- and labor-consuming field
testing stages and thus to increase genetic gain per unit time
(Burdon and Wilcox, 2011; Grattapaglia and Resende, 2011).

For rapid improvement of various objective traits that impact
social needs, it is effective to construct genome-wide studies based
on populations consisting of genetically diverse or unrelated
individuals. Predicting breeding values of unrelated individuals
is exactly required in the most promising applications of GS
(Meuwissen, 2009). However, particularly in conifers, genome-
wide studies are more difficult compared to other animals and
crops because of the large genome sizes (Chagné et al., 2003;
Neale et al., 2014) and low linkage disequilibrium (LD) due to
being undomesticated (Neale and Savolainen, 2004; Uchiyama
et al., 2013; Neale et al., 2014; Plomion et al., 2014; Isik et al.,
2016). GS accuracies in coniferous species dropped to very low
when predictions were conducted with completely unrelated
progeny and families (Beaulieu et al., 2014a,b; Lenz et al., 2017).
Indeed, almost all previous GS studies in coniferous species
examined populations consisting of related individuals such as
full- or half-sibs (Resende et al., 2012a,b,c; Zapata-Valenzuela
et al., 2012; Beaulieu et al., 2014a,b; De La Torre et al., 2015;
Ratcliffe et al., 2015; Bartholomé et al., 2016; Isik et al., 2016; Lenz
et al., 2017). For the success of GWAS and GS in populations
consisting of unrelated individuals, population genetics, e.g.,
population structure and intensity of the LD, are important
aspects. The genetic background is affected by population
histories such as population demography, domestication history
and selection schemes (Dunning et al., 2000; Meadows et al.,
2008; Slatkin, 2008; Gray et al., 2009; Rossi et al., 2009; Carneiro
et al., 2011; Hamblin et al., 2011; Akagi et al., 2016; Campoy et al.,
2016). Thus, population structures need to be evaluated prior to
implementation of GWAS and GS.

A coniferous species, Japanese cedar (Cryptomeria japonica
D. Don), which is a member of the Cupressaceae botanical
family, is an endemic species to Japan and is one of the most
important forestry species in the country, accounting for 44% of
the plantation area in Japan. The improvement program for the
species was started in 1957, and 3,670 phenotypically superior
first-generation plus trees were selected from artificial and natural
forests throughout Japan and were clonally conserved (Forest
and Forestry Products Research Institute, Forest Tree Breeding
Center, 2016). Phenotypic traits, such as growth and wood
quality, have been intensively evaluated for a large proportion
of the plus trees in more than 1,300 trials, including in clonal
and progeny test sites throughout Japan. The plus trees had been
selected from across most of the distribution area throughout
the long archipelago, which varies greatly in climate and, thus,
the plus tree populations are expected to have adaptions to
diverse environments (Miyamoto et al., 2014). Furthermore, the
plus trees possess genetic diversity that is similar to that in

natural populations because the core collection of individuals
showed genetic diversity comparable to or higher than that of
natural populations (Uchiyama et al., 2014). Because artificial
forests were considered to be constructed using seedlings derived
from nearby natural forests, the artificial forests of C. japonica
were considered to have expanded gradually from areas adjacent
to the natural forests and to have inherited genes from those
natural forests, giving plus trees a shared genetic background
(Tomaru, 1992; Miyamoto et al., 2014). Therefore, the plus
trees of C. japonica are important both as source materials for
further breeding and research activities and as genetic resources
(Miyamoto et al., 2014). Additionally, the first-generation plus
trees of C. japonica enable us to carry out genome-wide studies
based on these diverse resources and an enormous database of
phenotypic information.

In order to link phenotypes to genotypes in the genome-wide
studies for coniferous species such as C. japonica, a very large
number of markers would be required (Iwata et al., 2011; Lu et al.,
2016). Recently, a genotyping platform with more than 70,000
C. japonica SNPs was developed by resequencing expressed
sequence tags (ESTs) and genotyping platforms (Mishima et al.,
2018). Based on the genotyping platforms, marker-assisted
selection (MAS) for male sterility was successfully carried out by
QTL analysis with an F2 mapping population (Mishima et al.,
2018). The genotyping platforms would also allow genome-wide
studies for various quantitative traits. In an empirical genome-
wide study for C. japonica, Uchiyama et al. (2013) used GWAS
for wood property traits and quantity of male strobili (male
fecundity) based on C. japonica plus trees using 1,032 SNPs and
identified several significant markers. In this study, we are able to
perform genome-wide studies using a significantly larger number
of SNPs than were used in previous studies.

In the present study, we reveal the potential of genome-
wide studies in a coniferous species using unrelated C. japonica
plus trees from multiple breeding populations, which would
have experienced different histories and showed different genetic
characteristics. Understanding genetic diversity and population
structure is a necessary step in formulating strategies of genetic
improvement and conservation and is urgently needed for
evaluating and modifying the breeding program (Jin et al., 2016).
Using the plus trees from such multiple breeding populations,
we attempt (1) to examine the genetic background of the
C. japonica plus tree populations, (2) to perform GWAS and
genomic prediction for several traits, and (3) to clarify the
relationship between the results of genomic prediction and the
population structure. The targeted traits in this study were
growth, wood properties and male fecundity. Further, we discuss
future applications of genome-wide studies in C. japonica based
on this study.

MATERIALS AND METHODS

Plant Materials and DNA Extraction
A total of 476 plus trees from two breeding regions (Kanto and
Kyushu) were selected for sampling in this study (Supplementary
Table S1). Plus trees in the Kanto breeding region were selected
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from two populations, N-Kanto and S-Kanto, which are located
in northern-inland and southern-coastal areas of the Kanto
breeding region, respectively (Supplementary Figure S1). The
regions from where these populations originated showed the
same cluster in STRUCTURE analysis with K = 2 in the
population genetics study based on the core collection of plus
trees using 1000s of SNPs (see Figure 2 in Uchiyama et al.,
2014). All plus tree genotypes belonging to the two Kanto
populations were preserved in clonal archives at Forest Tree
Breeding Center (FTBC) in Hitachi, Ibaraki and those from
the Kyushu population at the Kyushu Regional Breeding Office
of FTBC. Current fresh shoots were sampled from all sample
genotypes and stored at −20◦C. Total DNA was extracted from
the sampled shoots using DNeasy Plant Mini Kit (QIAGEN,
Hilden, Germany). These were genotyped using four simple
sequence repeat markers, and the genotypes were confirmed to
be different within populations (data not shown).

Genotype Data
For SNP genotyping, we performed Affymetrix Axiom
genotyping using GeneTitan R© system with Axiom_Cj_70K_ver.
1.0 [73,274 SNPs; Gene Expression Omnibus Dataset (GEO):
GSE95616] or Axiom_Cj_70K_ver. 2.0 (73,640 SNPs; GEO:
GSE95618) arrays (Mishima et al., 2018). SNP data obtained
from the 53,378 SNP markers found in common on both arrays
were used for the following analysis with processing as follows.
First, SNPs categorized as monomorphic were removed. Then,
SNPs with a missing data ratio > 50% were removed. After
that, SNPs with minor allele frequency (MAF) below 5% were
discarded. The resulting 32,036 markers of 476 genotypes were
used for the following analysis. The SNP data were converted
to the scores (–1, 0 or 1), and the missing SNP data points were
imputed by the “A.mat” function with impute.method = "EM"
in the “rrBLUP” package (Endelman, 2011) in R 3.3.3 (R Core
Team, 2017).

Linkage Disequilibrium and Genetic
Structure
Mishima et al. (2018) constructed a linkage map of theC. japonica
F2 family based on 6,629 markers including SNPs used in this
study and simple sequence repeat markers. Here, we used the map
information for the 6,455 SNPs that remained following our SNP
selection process described above. We calculated the intensity
of LD (r2) between the mapped SNPs within the same linkage
group (LG). LD was calculated the “LD” function in the “genetics”
package in R (Warnes et al., 2013).

We calculated the average expected (HE) and observed (HO)
heterozygosities using the “basicStats” function of the “diveRsity”
package in R (Keenan et al., 2013). We performed ancestry
analysis for populations using the “snmf” function of the “LEA”
package in R (Frichot and François, 2015) based on the mapped
6,455 SNPs (data used before being imputed). To choose the
number of clusters (K), the cross entropy criterion that was
calculated by the snmf function with “entropy = TRUE” option
with K = 1–8, was used. In order to evaluate the magnitude of
admixture in each genotype for each population, we proposed

the effective number of clusters per genotype (NQ) using the
following equation

NQ =

K∑
i=1

1
Q2
i

(1)

where Qi is an individual assignment probability of the ith cluster
within each genotype and K is the K value set in the ancestry
analysis. The value of NQ has a range of 1–K, and when the
magnitude of the admixture is stronger, the value becomes higher.
We also conducted principal component analysis (PCA) for all
tested populations together by the “prcomp” function in R.

Phenotypic Data
In this study, we assessed three important traits for genomic
prediction, growth traits (height and diameter at breast height,
DBH), wood properties (wood stiffness and density) and
reproductive traits (male fecundity) using clonal propagated plus
tree individuals.

Growth traits were evaluated at age 10 years using plot mean
data obtained at clonal test sites. Almost all clonal test sites had
incomplete random block design with three replications. Dozens
of genotypes were planted at each test site, and there were several
overlaps of genotypes between the test sites. Each replication
had multiple plots, and >10 individuals of each genotype were
planted within each plot. For the analysis of growth traits,
we used growth data obtained from 137 and 132 clonal test
sites in Kanto and Kyushu regions, respectively. Genetic values
were calculated as phenotype data of growth traits for genomic
prediction using a linear mixed model based on the BLUP (best
linear unbiased prediction) method using ASReml 3 software
(VSN International, Hemel Hempstead, United Kingdom). The
following mixed linear model was used:

yijk = µ + Si + S(B)ij + Ck + (SC)ik + eijk (2)

where yijk is a plot mean value of the kth genotype at the jth block
within ith test site; µ is the overall mean; (SC)ik is the interaction
effect of the ith test site and kth genotype; and eijk is the residual.
The fixed effects included µ, Si and S(B)ij, and the others were
random effects. The parameter Ck was assumed to be the genetic
value of height or DBH.

Wood stiffness and density were evaluated by stress wave
velocity measured with TreeSonic Microsecond Timer (Fakopp,
Hungary) or Fakopp Microsecond Timer (Fakopp, Hungary)
and by penetration depth with Pilodyn 6J Forest (Proceq,
Switzerland) according to the procedure described by Mishima
et al. (2011). Genotypes from N-Kanto and S-Kanto populations
were assessed together in the Ohkubo stock garden of FTBC
in Hitachi, Ibaraki (36◦33′N, 140◦36′E). Clonal replications
were in the range 2–3 at the site. As the clonal value of
each trait, we averaged the scores from individuals of each
genotype. The data in N-Kanto and S-Kanto used the same
values obtained by Mishima et al. (2011). For genotypes from
the Kyushu populations, stress wave velocity was assessed in
clonal archives in Koshi, Kumamoto (32◦53′N, 130◦44′E) and in
Mifune, Kumamoto (32◦47′N, 130◦57′E), and wood density was
assessed in these two clonal archives in Kumamoto and another
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12 clonal test sites. The number of sites and ramets used for each
genotype is unbalanced; therefore, the BLUP value obtained from
the mixed linear model (formulae 2) was used as a clonal value
for each genotype.

For evaluation of male fecundity, male strobili quantity
index was measured according to the procedure described by
Tsubomura et al. (2013). Briefly, after treatment of 100 ppm
gibberellin (GA3) on three shoots in early July of the same
year, the index (1: less – 5: much) for strobili quantity
on each individual tree was recorded by multiple observers
in December, and the average from the three shoots was
taken as a measure of male fecundity for each individual.
Genotypes from N-Kanto and S-Kanto populations were assessed
together at a clonal garden in FTBC, and those from the
Kyushu population were assessed at a clonal garden at the
Kyushu Regional Breeding Office; clonal replication was in the
range of 2–3 at both sites. As the clonal value, we averaged
the scores from individuals of each genotype. The data of
genotypes in N-Kanto and S-Kanto were the same as reported
in Tsubomura et al. (2013) and obtained in Kyushu for this
study.

The N-Kanto and S-Kanto populations were evaluated
together for genotype traits and compared with those in the
Kyushu population because individuals from N-Kanto and
S-Kanto were planted together. The numbers of analyzed data
and genotypes for each trait within each breeding region are
shown in Supplementary Table S2. Based on the dataset,
significance of genetic effects for the objective traits was
confirmed by F test or a likelihood ratio test according to Self
and Liang (1987), which was employed for comparison with no
genetic factor models. For the likelihood ratio test, a value of
deviance, 1D1,2, was calculated using the following equation:

1D1,2 = −2× (log L∗1 − log L∗2) (3)

where log L∗1 and log L∗2 are maximum log-likelihoods of models
without and with genetic factor, respectively. 1D1,2 follows a chi-
square distribution with 1 degree of freedom. The genetic effects
were statistically significant for all assessed traits in this study
(Supplementary Table S2). The genotypes used for GWAS and
genomic prediction (Supplementary Table S1) were all included
in the phenotypically evaluated genotypes in Supplementary
Table S2.

Procedure for GWAS
We carried out GWAS for each population and each trait
using all 32,036 SNPs in the “GWAS” function of the rrBLUP
package in R. In the function, the “K” option, which specifies
the covariance between genotypes, was set with a kinship matrix
between genotypes calculated by the “A.mat” function of the
rrBLUP package and the “n.PC” option, which specifies the
number of principal components (PC) to include as fixed effects,
was determined by the variances of PC scores based on the
PC analysis (PCA) for each population (Supplementary Figure
S2); the values were set to 2, 6 and 5 in the N- and S-Kanto
and Kyushu populations, respectively. We used a false discovery
rate (FDR) < 0.1 or −log10(P) > 3 as criteria for statistically

significant GWAS results. We calculated q-values for FDR using
the “p.adjust” function in R. For estimation of unmapped SNP
positions which showed −log10(P) > 3 in GWAS, we conducted
LD calculation with the 6,455 mapped SNPs. If the highest r2 was
more than 0.6, the unmapped SNP position was assumed as being
equal to that of the paired SNP. We independently performed
GWAS for each population and then detected significant SNPs
at similar map positions (<10 cM) across the populations for
identifying commonly significant genome regions. Arabidopsis
homologs were used as searches for significant loci within the
TAIR10 database using BLASTN with an E-value cutoff of 1E−5.

Genomic Prediction and Validation
We performed genomic prediction for each population and
each trait using three methods: genomic best linear unbiased
prediction (GBLUP), BayesB and Random Forest (RF). GBLUP
was performed by using the “kin.BLUP” function of the rrBLUP
package of R. BayesB was performed by using the “BGLR”
function of the “BGLR” package of R (Pérez and de los
Campos, 2014) with a 10,000 burn-in and 20,000 iteration
settings. We also performed RF with the “randomForest”
function of “randomForest” package of R (Liaw and Wiener,
2002). Prediction accuracy was estimated using a correlation
coefficient between phenotypic value and genomic prediction
value obtained from validation dataset in 10-fold cross validation.
The correlation coefficients from the 10-time replications in
10-fold cross validations were averaged.

Prediction Accuracies With Selected
SNPs
We performed genomic prediction with decreased number of
SNPs to estimate the effective SNP numbers for application of
GS using low-density markers. Taking into account the positions
of SNPs, we examined two types of SNP sampling procedures
from the 6,455 mapped SNPs based on the methods described
in Cericola et al. (2017). One was the following GWAS-based
selection procedure: (i) select the SNP with the highest –log10(P)
of GWAS; (ii) exclude all the SNPs positioned ± d from the
selected SNP (initial d = 10 cM); (iii) if there are still SNPs
to select for, move to step i; (iv) if all SNPs are excluded or
selected, select the SNP which shows the highest −log10(P) and
the distance more than d = d/2 from already excluded ones to
select; (v) move to step ii, and carry out until all SNPs that
are located in different positions are selected; (vi) if all SNPs
that are located different positions from the selected SNPs, pick
up the SNPs in the order of higher values of –log10(P). The
other was the semi-random selection procedure as follows: (i)
assign scores (1-6,455) randomly and uniquely for all SNPs; (ii)
assuming the assigned scores as –log10(P), conduct the GWAS-
based selection procedure from step i. Following this procedure
enables a limitation on the inclusion of markers in the same
region (Cericola et al., 2017). Numbers of SNPs were set at 10,
25, 50, 100, 250, 500, 1,000, 2,500, 5,000, and 6,455. GWAS
was performed by same methods as mentioned above. Using
the groups of the selected SNPs, genomic predictions based on
GBLUP or RF were carried out, and the prediction accuracies
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were calculated. For the procedures, 10-fold cross validation with
10-time replications were performed.

RESULTS

Genetic Characteristics of the
Populations
Table 1 shows a summary of genetic characteristics of the
populations. The average HE and HO had similar values among
the populations, ranging from 0.360 to 0.365 and from 0.356 to
0.358, respectively.

The extent of LDs (r2) based on the mapped SNPs within
the same LGs decayed rapidly within several centimorgans
for all populations, and the decay was more rapid in the
N-Kanto and S-Kanto populations than in the Kyushu population
(Figures 1A–C). The average r2 values showed a similar low level
in all populations, ranging from 0.056 to 0.063 (Table 1). The
average ratio of significant SNP pairs (p < 0.01) was higher in
Kyushu (16.9%) than in N-Kanto (8.6%) and S-Kanto (7.8%),
as shown in Table 1. On the other hand, based on SNPs within
the same isotigs, which were assembled ESTs, SNP pairs in
which LDs extended over 6 kb were observed in all populations
(Figures 1D–F). The average values of r2 (0.393–0.395) and the

ratio of significant SNP pairs (82.5–86.8) were much higher than
those based on the mapped SNPs, but values were similar within
the populations (Table 1). The distribution of LDs between
mapped SNPs within LG2 for each population is shown in
Figure 2. In LG2, pairs showing higher level of LD (e.g., r2 > 0.8)
were observed only close to the diagonal line in all populations,
i.e., SNP pairs located in the vicinity. In the Kyushu population,
SNP pairs showing r2 > 0.1 were more frequently observed
relatively far away from the diagonal line than in the N-Kanto and
S-Kanto populations. Data for other LGs showed similar trends as
was observed in LG2 (Supplementary Figure S3).

Figure 3 shows the results of ancestry analysis based on
the 6,455 mapped SNPs. The cross-entropy criterion minimum
occurs at K = 4 (Figure 3A), and ancestry analysis for the
genotypes from the all populations at this value show four clusters
in each population but in different proportions (Figure 3B).
The N-Kanto and S-Kanto populations mainly consisted of
three clusters (represented in blue, green and yellow colors).
On the other hand, the Kyushu population consisted of clusters
represented by yellow, green and red colors, and the blue
cluster was a relatively minor one. The mean value of NQ
for the genotypes in Kyushu was relatively smaller (1.68;
Table 1) than that in the N-Kanto (1.83) and S-Kanto (1.80)
populations.

FIGURE 1 | Linkage disequilibrium (r2) versus map distance (cM) for each population of C. japonica plus trees. Upper and lower panels represent LDs within the
same LG and within the same isotigs for populations N-Kanto (A and D, respectively), S-Kanto (B and E, respectively) and Kyushu (C and F, respectively). Data
derived from the 11 LGs were represented together for each population.
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TABLE 1 | Summary of population genetics characteristics.

Based on the mapped SNPs within the same LG Based on SNPs within the same isotigs

Population n HE HO r2 Ratio of significant SNP pairs (%) r2 Ratio of significant SNP pairs (%) NQ± SD

N-Kanto 181 0.364 0.356 0.056 (0.050–0.067) 8.6 (7.4–10.0) 0.393 86.8 1.83 ± 0.574

S-Kanto 159 0.365 0.358 0.063 (0.052–0.071) 7.8 (7.2–8.7) 0.394 85.2 1.80 ± 0.565

Kyushu 136 0.360 0.357 0.059 (0.056–0.066) 16.9 (15.6–19.0) 0.395 82.5 1.68 ± 0.611

Total/Mean 476 0.059 11.1 0.394 84.9 1.78 ± 0.585

The r2 values and ratio of SNP pairs with significant LD per total pairs represent the means of the averages within LGs and isotigs. Values in parentheses represent the
range.

FIGURE 2 | Linkage disequilibrium (LD) between pairs of SNPs as heat map in LG2.

Figure 4 shows a scatter plot of the first and second principal
components (PC1 and PC2, respectively) from the PCA result.
The genotypes from the N-Kanto and S-Kanto populations
showed overlapping and similar distributions. On the other hand,
genotypes from the Kyushu population showed a wider ranging
distribution with partial overlap in the distributions with those
from the two Kanto populations.

Genome-Wide Association Study
Throughout all traits in the three populations, significant markers
in the criterion based on –log10(P) > 3 were observed in the
GWAS results (Figure 5 and Supplementary Table S3). Out of
466 significant SNPs, only two loci that showed FDR < 0.1 were
detected (Supplementary Table S3); each one SNP was observed
for height in the N-Kanto and for wood stiffness in Kyushu
populations, respectively. The map positions of the two SNPs
were not accurately determined because these were not mapped
by Mishima et al. (2018) nor the values of r2 with paired SNPs
were ≤ 0.6 (Supplementary Table S3).

Table 2 shows significant SNPs (–log10(P) > 3) located close
(<10 cM) to the position across the three populations. In total,
13 SNPs were detected, i.e., at ∼131–141 cM in LG5 for DBH,
at ∼52–56 cM in LG5 for wood stiffness, and at ∼81–84 cM
in LG7 for male fecundity. Particularly for male fecundity, the
map position (84.71 cM in LG7) was consistent in the three

populations. These loci were matched with Arabidopsis homologs
by a BLASTN search (Table 2).

Prediction Accuracies Based on the
Three Models
We compared genomic prediction accuracies among the three
models, GBLUP, BayesB and RF (Table 3). For height, RF
showed the highest prediction accuracies in N-Kanto (0.267)
and Kyushu (0.468), whereas in S-Kanto the highest accuracy
was obtained with BayesB and the value was close to zero (–
0.026). For DBH, similar but slightly better results were observed
compared to those for height; RF showed the highest accuracies
in N-Kanto (0.299) and Kyushu (0.523), but in S-Kanto, BayesB
again showed the highest accuracy but the value was close to
zero (0.033). For wood stiffness, GBLUP and RF showed higher
accuracies in S-Kanto (0.313) and Kyushu (0.531), respectively;
in N-Kanto, the highest accuracy was obtained with BayesB and
the value was close to zero (–0.099). In terms of wood density,
GBLUP and RF showed higher accuracies in N-Kanto (0.247) and
Kyushu (0.193), respectively; in S-Kanto, the highest accuracy
was obtained for RF but the value was close to zero (–0.076). For
male fecundity, GBLUP had higher accuracies for all populations
(N-Kanto, 0.617; S-Kanto, 0.357; Kyushu, 0.634).

Although the best models were different for the different
populations and traits, GBLUP and RF were overall better
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FIGURE 3 | (A) Relationship between minimal cross-entropy and number of ancestral populations (K) used in ancestry analysis. The values represent the averages
of 10 replications. Error bars represent SE. (B) Bar-plot of admixture coefficients based on ancestry analysis using the 6,455 mapped SNPs at K = 4. Different colors
represent different clusters.

models than BayesB. Among traits, male fecundity was the
most predictable, and height and wood density showed lower
accuracies. Based on the accuracies of the best model, the Kyushu
population showed the best predictability for all traits except for
wood density. Between the two Kanto populations, accuracies of
almost all traits were higher in the N-Kanto population than in
the S-Kanto population, except for wood density. Therefore, the
prediction accuracies were in descending order Kyushu, N-Kanto
and S-Kanto.

Prediction Using Selected SNPs
Figure 6 shows transitions of prediction accuracies with GBLUP
or RF (higher accuracy model selected) as a function of the
number of SNPs selected by GWAS-based selection or semi-
random selection procedures. For all traits, except for male
fecundity, and all populations, prediction accuracies with SNPs
of GWAS-based selection were higher than with semi-random
selection. Based on results of the GWAS-based selection, high
accuracies that were not significantly different than the highest
ones (p > 0.05) were observed with relatively small numbers of
SNPs (≤500) for height in S-Kanto and Kyushu, DBH in S-Kanto

and Kyushu, wood stiffness in N-Kanto and Kyushu, and wood
density in S-Kanto. For male fecundity, prediction accuracies
with a small number of SNPs in the semi-random selection were
higher than for GWAS-based selection, and similar transitions of
accuracies with larger samplings of SNPs (≥500) were observed
for both selection procedures in all populations. Particularly in
the S-Kanto population, high accuracy using 2,500 SNPs selected
by the semi-random selection procedure was observed for male
fecundity. Prediction accuracies for height and DBH in N-Kanto,
wood stiffness in S-Kanto, wood density in N-Kanto and Kyushu,
and male fecundity in N-Kanto and Kyushu were significantly
higher at all SNPs (32,036) than that at the other sampling levels.

DISCUSSION

Genetic Characteristics of the
Populations
For the first-generation plus tree populations of C. japonica, LDs
at the LG level rapidly decayed in all populations; however, LDs
in the Kyushu population were slightly higher than that in the
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FIGURE 4 | Bi-plot of PCA with PC1 and PC2 based on 6,455 mapped SNPs
for N-Kanto, S-Kanto, and Kyushu populations.

others. As Uchiyama et al. (2014) mentioned, domestication and
breeding programs for Japanese cedar are still in their infancy and
the plus trees have not suffered from diversity losses caused by a
domestication bottleneck. On the other hand, LDs at the isotig
level showed high values at a distance of over 6 kb. Moritsuka
et al. (2012) reported that LD was extensive and did not decay
even at a distance of 100 kb in non-coding regions of the genome

of this species. Based on the previous findings, it is considered
that longer LDs at the genomic DNA level remain than were
observed in this study forC. japonica plus trees because the isotigs
consisted of coding regions.

The results of the genetic structure based on ancestral analysis
showed that individuals in the Kyushu population represented
a less effective number of clusters per individual (NQ) than
in the other two populations. Additionally, the genotypes from
the Kyushu population showed a wider range distribution than
did those from the two Kanto populations in the PCA. From
these results, characteristics in the Kyushu population were
different from the other populations, in which the distribution
of weak but positive LDs throughout the chromosomes, smaller
NQ and higher genetic diversity were observed. On the other
hand, differences between the two Kanto populations were slight
compared to the differences between the Kyushu population and
the two Kanto populations.

Population histories reflect the genetic characteristics in
human and several animal and crop species (Dunning et al.,
2000; Meadows et al., 2008; Slatkin, 2008; Gray et al., 2009;
Rossi et al., 2009; Carneiro et al., 2011; Hamblin et al., 2011;
Akagi et al., 2016; Campoy et al., 2016). Genetic characteristics
of C. japonica plus trees are considered to be based on the
common genetic background of natural populations (Tomaru,
1992; Miyamoto et al., 2014). According to Tsukada (1982),
C. japonica had multiple refugia in Japan during the last
glacial period where relatively moist, cool climates prevailed. Its
expansion began from scattered full glacial centers of distribution
∼15,000 years ago, reaching its maximum abundance from
7,000 to 2,000 years ago (Tsukada, 1982). From more than
10,000 years ago, C. japonica expanded from refugias, such

FIGURE 5 | Manhattan plots of GWAS results for the assessed traits in each population. Results for traits of height, DBH, wood stiffness, wood density and male
fecundity are shown in columns for the N-Kanto, S-Kanto and Kyushu populations shown in the upper, middle and lower rows, respectively. Vertical blue lines
represent the common significant regions shown in Table 2. Red circles indicate significant SNPs (– log10(P) > 3) which were unmapped but estimated their
positions based on the LD extent with the mapped ones.
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TABLE 3 | Mean (±SE) accuracies based on all 32,036 SNPs.

Trait Model N-Kanto S-Kanto Kyushu

Height GBLUP 0.120 ± 0.012 −0.040 ± 0.013 0.446 ± 0.006

BayesB 0.114 ± 0.016 −0.026 ± 0.021 0.432 ± 0.006

RF 0.267 ± 0.017 −0.089 ± 0.037 0.468 ± 0.007

DBH GBLUP 0.253 ± 0.006 −0.001 ± 0.016 0.512 ± 0.006

BayesB 0.209 ± 0.010 0.033 ± 0.020 0.505 ± 0.005

RF 0.299 ± 0.019 −0.052 ± 0.030 0.523 ± 0.005

Wood stiffness GBLUP −0.140 ± 0.018 0.313 ± 0.010 0.520 ± 0.006

BayesB −0.099 ± 0.013 0.216 ± 0.012 0.500 ± 0.005

RF −0.124 ± 0.021 0.088 ± 0.031 0.531 ± 0.008

Wood density GBLUP 0.247 ± 0.009 −0.182 ± 0.016 0.082 ± 0.019

BayesB 0.193 ± 0.013 −0.118 ± 0.015 0.129 ± 0.011

RF 0.144 ± 0.017 −0.076 ± 0.018 0.193 ± 0.014

Male fecundity GBLUP 0.617 ± 0.004 0.357 ± 0.008 0.634 ± 0.003

BayesB 0.609 ± 0.003 0.322 ± 0.009 0.616 ± 0.003

RF 0.548 ± 0.006 0.300 ± 0.030 0.629 ± 0.005

Highest value in each trait and population combination is in bold.

FIGURE 6 | Transitions of prediction accuracies as a function of the number of SNPs selected, based on the GWAS result for each population–trait combination.
Results for traits of height, DBH, wood stiffness, wood density and male fecundity are shown in columns for the N-Kanto, S-Kanto and Kyushu populations shown in
the upper, middle and lower rows, respectively. Orange and light-green colored circles indicate that those are not significantly different from the highest values (red
and green colored circles, respectively) with t-test (p ≥ 0.05). Error bars represent SE. The model (G-BLUP or RF) showing better prediction accuracies in Table 3
was used.

as the Izu Peninsula along the Pacific coast or Wakasa
Bay along the Japan Sea coast (Tsukada, 1982). Additionally,
based on phylogeography and species distribution modeling,
a “cryptic” refugia was thought to be present in northern
Tohoku (Kimura et al., 2014). The current genetic structure
of natural forests of C. japonica is considered to reflect the
locations of refugia because offspring of the survivors would
have colonized out from refugia during the interglacial period,
and genetic differentiation between the isolated populations
and other populations is likely to have increased during their

isolation (Tsumura et al., 2014). The early stages of forestation of
C. japonica started more than 500 years ago (Tokugawa, 1974).
The genetic structure of current artificial forests and plus-tree
populations of the species were considered to be reflected the
geography of the natural populations as shown in Uchiyama et al.
(2014).

In this study, almost similar LD and population structures
were observed between the two Kanto populations. This suggests
that C. japonica individuals in the Kanto region originating from
refugia along the Pacific coastal area, including plus trees in
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both of the Kanto populations. On the other hand, on Kyushu
Island, C. japonica became extinct before 25,000 years ago, and
the initial stock of this species was likely brought from Honshu
Island by prehistoric man ∼2,500 years ago (Tsukada, 1982). In
this study, the Kyushu population showed higher LDs and higher
diversity based on PCA than those of other populations. A similar
LD result was also reported by Uchiyama et al. (2014) in which
a subpopulation from the Kyushu region exhibited the highest
level of LD. As Uchiyama et al. (2014) discussed, population
history and forestry management have led to higher LD. Higher
LD observed in the Kyushu population might reflect founder
populations that have recently expanded from relatively small
sizes (Shifman and Darvasi, 2001). The higher diversity of the
Kyushu population suggests the existence of multiple founders
from different genetic backgrounds. Additionally, clonal forestry
using cutting propagation has been traditionally conducted in
Kyushu since 500 years ago (Miyajima, 1989) while planting
seedling has been the main strategy in the Kanto region. The
prevailing method of vegetative propagation in Kyushu makes
recombination unlikely to occur and may also maintain LD
(Barnaud et al., 2006; Uchiyama et al., 2014; Minamikawa et al.,
2017). The result that mean NQ value based on ancestry analysis
was smaller in the Kyushu population than in the others means
that admixture among individuals occurred with less frequency
due to the forestry characteristics in the area. These differences
in terms of population histories and forestry regimes affect the
genetic characteristics of C. japonica plus tree populations.

Detection of Significant Genome
Regions by GWAS
Among the results of GWAS for the five traits in the three
populations, the only two SNP loci that showed FDR < 0.1 were
detected for height in the N-Kanto and for wood stiffness in
the Kyushu population. From the result that such few loci were
significant based on the FDR criterion, the detection power of
GWAS seems to not be high in this study. Such low GWAS power
can be attributed to using unrelated first-generation plus trees
as assessment populations. Minamikawa et al. (2017) observed
that GWAS detection power in citrus was higher using parental
and F1 populations than in the parental population only. In
this study, using only the unrelated first-generation plus tree
genotypes probably caused the low detection power of GWAS.

Even though the detectability of GWAS was low, the common
significant genomic regions throughout the three populations
were detected by performing GWAS separately for the traits of
DBH, wood stiffness and male fecundity. Generally in GWAS,
there is potential to detect false associations between markers
and traits where no causal relation exists (Platt et al., 2010).
On the other hand, GWAS using multiple different populations
is considered to compensate for such low detection power and
to be useful for avoiding detection of such false associations.
Additionally, the low LD observed in C. japonica should
reduce the occurrence of spurious associations (Abdurakhmonov
and Abdukarimov, 2008; Hamblin et al., 2011). Thus, the
common significant genomic regions detected by GWAS using
all populations might be expected to be associated with loci with

large effects contributing to the phenotype of corresponding traits
of C. japonica, particularly male fecundity. It is possible that the
significant loci detected by GWAS in this study were located close
to causative genes. Thus, GWAS results such as those obtained
in this study could provide important insights in future genetic
research on the traits of this species.

Difference of Accuracies of Genomic
Prediction Depend on the Traits, Models
and Populations
For genomic prediction accuracy, trait heritability is one of
the important factors as described in previous studies (Hayes
and Goddard, 2010; Grattapaglia and Resende, 2011). The
ranges of broad-sense heritability which were previously reported
for the traits assessed in this study were as follows: 0.37–
0.72 for height (Tamura et al., 2006; Fukatsu et al., 2011),
0.21–0.52 for DBH (Fujisawa et al., 1994; Tamura et al.,
2006; Fukatsu et al., 2011), 0.65 for wood stiffness (Fujisawa
et al., 1994), 0.78–0.88 for wood density (Tamura et al.,
2006; Fukatsu et al., 2011), and 0.94 for male fecundity
(Nakamura, 2015). In this study, prediction accuracies for
male fecundity were the highest, and those for wood density
were the lowest among the assessed traits. Therefore, although
there was not always positive relationship between the broad-
sense heritability and prediction accuracies, the both variables
for male fecundity were higher than that for the other
traits.

The differences in the genetic architecture between traits could
be expected to affect the relative efficacy of different prediction
methods (Spindel et al., 2015). In this study, the prediction
accuracies with GBLUP were higher than those obtained with
BayesB for almost all assessed traits, except for traits with
accuracies that were close to zero. The BayesB method is regarded
as useful only if markers pick up strong associations with QTL
(Jannink et al., 2010). Thus, the low performance of BayesB
observed in this study suggests that the assessed traits were
controlled by many QTLs in C. japonica. The accuracies obtained
by RF also showed high values for prediction of growth and
wood stiffness in this study. When GS is applied for selection
from clonal populations, prediction of dominance effects and the
effect of epistatic interactions of specific allelic patterns at several
loci might be important for predicting total genetic values, and
such effects would have to be added to the model (Grattapaglia
and Resende, 2011). Since a non-linear prediction model such
as RF may be particularly useful when the relationships between
predictors and responses are non-linear, as would occur if
epistatic effects account for a significant portion of genetic
variation of a target trait (Jannink et al., 2010). Non-parametric
regression methods that may also account for non-additive effects
have also been proposed (Gianola and van Kaam, 2008; González-
Recio et al., 2008; Bennewitz et al., 2009; Neves et al., 2012). Of
these, it is possible that traits such as growth or wood properties
of C. japonica plus tree genotypes would be influenced by non-
additive genetic factors.

We also observed accuracy differences among populations; the
prediction accuracies in the Kyushu population were generally
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the highest, followed in order by those in the N-Kanto and
S-Kanto populations. Genomic prediction accuracy could be
attributed to two main factors: (1) prediction based on LD
between markers and QTL; (2) prediction based on genomic
relationships arising from population structure (Daetwyler et al.,
2012). In C. japonica plus trees, although results depend on
traits and populations, we confirmed moderate accuracies (0.5–
0.6) for some traits in the Kyushu population and for male
fecundity in the N-Kanto population. Among the populations,
the Kyushu population showed slightly higher LD, corresponding
to the order of prediction accuracies. The extent of LD is one
of the key factors for genomic prediction because it is based
on the LD between markers and causal QTLs (Heffiner et al.,
2009; Jannink et al., 2010; Brachi et al., 2011; Korte and Farlow,
2013). Additionally, in the Kyushu population, relatively high
genetic diversity and a different ancestral (red colored) cluster
were observed compared with that in the others. Our results
suggest that such differences in genetic characteristics among the
populations, including both of LD and genetic structure, reflected
the prediction accuracies.

Future Application of Genomic
Prediction in C. japonicaauthor
Improvement
In terms of successfully applying GS models, moderate to high
prediction accuracy is required. In this study, we observed
moderate prediction accuracies for DBH and wood stiffness in
the Kyushu population and male fecundity in the N-Kanto and
Kyushu populations. Further, for general applications of GS,
prediction of breeding values for individuals from the same
population but not particularly closely related to the training
individuals, or ‘unrelated’ individuals, is required (Meuwissen,
2009) and are used in the most promising applications
of GS (Wray et al., 2007; Meuwissen, 2009). Furthermore,
in the prediction of genomic estimated breeding value, the
phenotype of individuals is regressed against genetic markers
in the training population. The ideal phenotype would be true
breeding values (TBV) measured in a population of unrelated
individuals without selection (Garrick et al., 2009). In this
study, we constructed genomic prediction models using multiple
populations consisting of unrelated plus trees of C. japonica
based on clonal abilities, which would be assumed as the TBV
of genotypes. Therefore, the prediction models constructed in
this study could be generally considered to be applicable to other
individuals within the same population, although dependent on
traits or populations. Namely, the models would allow to predict
the traits of other first-generation plus trees which had not been
phenotyped and to select additional superior trees from natural
or artificial forests. By phenotyping such selected individuals in
future, it would be possible to verify the effectiveness of the
prediction models for general GS applications.

In GS application, high genotyping cost would be another
problem. Reducing the SNP number is an effective way to
cut genotyping cost. Pre-selecting SNPs could be crucial for
improving the quality of genomic predictions (Croiseau et al.,
2011). In this study, we examined two procedures for SNP

selection, i.e., GWAS-based selection and semi-random selection.
Our results showed that the former was more effective for
traits of growth and wood properties, and similar accuracies
were obtained by both selection procedures with large size
(≥500) SNPs for male fecundity. Cericola et al. (2017) used
selection procedures similar to those in the present study and also
showed that GWAS-based SNP selection increased the accuracy
compared to that for semi-random selection. It is suggested that
prediction accuracies can be improved by SNP selection based on
the GWAS result (Spindel et al., 2015, 2016). Also in this study,
GWAS-based selection may be a common and effective way to
predict assessed traits, although prediction accuracies would be
decreased for some traits and populations. From the results of the
GWAS-based selection, there were differences in the optimum
SNP number for genomic prediction depending on traits and
populations. Such differences in transitioning patterns might
be attributable to differences in genetic architecture between
traits or populations. Nevertheless, for populations which showed
low prediction accuracies, additional SNPs development might
be necessary to improve accuracy of genomic prediction in
C. japonica. Advanced genome sequencing of the species would
enable us to develop more high-density SNPs in the near future.

Since the progress of C. japonica breeding (currently in the
second generation) is relatively delayed compared with other
coniferous species, such as Pinus taeda (in the third generation;
(North Carolina State University Cooperative Tree Improvement
Program [NCSUCTIP], 2017) and Pinus radiata (in the third
generation; Dungey et al., 2009). Currently, forward selection
of the second-generation plus trees has been undertaken, and
evaluations of their offspring and clones have been started
at clonal or progeny test sites for C. japonica. Genome-wide
studies might have potential to accelerate the breeding cycle
of this species. In a simulation study of GS for C. japonica,
although prediction accuracies of models constructed in an
early generation decreased with each generation, genetic gains
were maintained for several generations (Iwata et al., 2011).
Therefore, it is expected that the models constructed for the
first generation would be also useful for predictions in several
subsequent generations. In several empirical studies for other
coniferous species, high accuracies (>0.7) has been reported
for consideration of full-sib families (Resende et al., 2012a,b;
Beaulieu et al., 2014b; Lenz et al., 2017). These findings
suggest that under certain conditions of high relatedness,
long-range LD is likely a more potent factor of accuracy
than short-range LD (Grattapaglia and Resende, 2011; Resende
et al., 2012a; Beaulieu et al., 2014b). In this case, prediction
accuracies obtained in the promoted generation would be
expected to increase from the basic ones observed in this
study using the first-generation plus trees. Accuracies in
the next generation will be examined in future studies in
C. japonica.

CONCLUSION

This is the first empirical study of both GWAS and genomic
prediction in C. japonica using multiple populations of unrelated
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first-generation plus tree genotypes. Among the assessed
populations, the genetic characteristics including the extent
of LD and genetic structure were different, considering
that such characteristics are tied to population histories.
We demonstrated the possibility of detection significantly
contributing to genomic regions for traits by GWAS using
multiple populations. In addition, we showed the basic potential
of genomic prediction and empirically revealed the genetic
characteristics as determinative factors of prediction accuracy
using multiple populations. Furthermore, we demonstrated
an effective strategy of SNP selection for genomic prediction
using the GWAS results. Our present study suggests the
potential of GWAS and GS for improvement of the
species.
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