405 research outputs found
Generic phase diagram of "electron-doped" T' cuprates
We investigated the generic phase diagram of the electron doped
superconductor, Nd2-xCexCuO4, using films prepared by metal organic
decomposition. After careful oxygen reduction treatment to remove interstitial
Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with
decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram
from the previous bulk one. The implication of our results is discussed on the
basis of tremendous influence of Oap "impurities" on superconductivity and also
magnetism in T' cuprates. Then we conclude that our result represents the
generic phase diagram for oxygen-stoichiometric Nd2-xCexCuO4.Comment: 12 pages, 4 figures; International Symposium on Superconductivity
(ISS) 200
Long-range interactions in the effective low energy Hamiltonian of Sr2IrO4: a core level resonant inelastic x-ray scattering study
We have investigated the electronic structure of Sr2IrO4 using core level
resonant inelastic x-ray scattering. The experimental spectra can be well
reproduced using ab initio density functional theory based multiplet ligand
field theory calculations, thereby validating these calculations. We found that
the low-energy, effective Ir t2g orbitals are practically degenerate in energy.
We uncovered that covalency in Sr2IrO4, and generally in iridates, is very
large with substantial oxygen ligand hole character in the Ir t2g Wannier
orbitals. This has far reaching consequences, as not only the onsite
crystal-field energies are determined by the long range crystal-structure, but,
more significantly, magnetic exchange interactions will have long range
distance dependent anisotropies in the spin direction. These findings set
constraints and show pathways for the design of d^5 materials that can host
compass-like magnetic interactions
- …