6,635 research outputs found

    Strong 3p -T1u Hybridization in Ar@C60

    Full text link
    Multilayers of fullerenes with and without endohedral Ar units, C60 and Ar@C60, were investigated by photoemission and density functional theory. The stoichiometry and the endohedral nature of Ar is checked by x-ray photoelectron spectroscopy and x-ray photoelectron diffraction. Valence band ultraviolet photoemission spectra show a strong hybridisation of the Ar 3p valence shell with the 6T1u molecular orbital of C60. A hybridisation gap of 1.6 +/- 0.2 eV is found. This is in agreement with density functional theory (DFT) that predicts 1.47 eV, and indicates Ar@C60 to be a noble gas compound with a strong coupling between Ar and the C60 cage. No giant Ar photoemission cross section as predicted for the gas phase in [Phys. Rev. Lett. 99, 243003 (2007)] was found

    Transition state method and Wannier functions

    Full text link
    We propose a computational scheme for materials where standard Local Density Approximation (LDA) fails to produce a satisfactory description of excitation energies. The method uses Slater's "transition state" approximation and Wannier functions basis set. We define a correction to LDA functional in such a way that its variation produces one-electron energies for Wannier functions equal to the energies obtained in "transition state" constrained LDA calculations. In the result eigenvalues of the proposed functional could be interpreted as excitation energies of the system under consideration. The method was applied to MgO, Si, NiO and BaBiO3_3 and gave an improved agreement with experimental data of energy gap values comparing with LDA.Comment: 13 pages, 6 figures, 1 tabl

    Violation of the isotropic-â„“\ell approximation in overdoped La_{2-x}Sr_xCuO_4

    Full text link
    Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4 are fitted using the Ong construction and band parameters inferred from angle-resolved photoemission. Within a band picture, the low temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean-free-path â„“\ell. This violation of the isotropic-â„“\ell approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We show that both band anisotropy and anisotropy in the elastic scattering channel strongly renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide doping and temperature range.Comment: 4 pages, 4 figure

    Pressure-induced enhancement of superconductivity and superconducting-superconducting transition in CaC_6\_6

    Get PDF
    We measured the electrical resistivity, ϱ(T)\varrho(T), of superconducting CaC_6\_6 at ambient and high pressure up to 16 GPa. For P≤P \leq8 GPa, we found a large increase of T_cT\_c with pressure from 11.5 up to 15.1 K. At 8 GPa, T_cT\_c drops and levels off at 5 K above 10 GPa. Correspondingly, the residual ϱ\varrho increases by ≈\approx 200 times and the ϱ(T)\varrho(T) behavior becomes flat. The recovery of the pristine behavior after depressurization is suggestive of a phase transition at 8 GPa between two superconducting phases with good and bad metallic properties, the latter with a lower T_cT\_c and more static disorder

    Interpolating between the Bose-Einstein and the Fermi-Dirac distributions in odd dimensions

    Full text link
    We consider the response of a uniformly accelerated monopole detector that is coupled to a superposition of an odd and an even power of a quantized, massless scalar field in flat spacetime in arbitrary dimensions. We show that, when the field is assumed to be in the Minkowski vacuum, the response of the detector is characterized by a Bose-Einstein factor in even spacetime dimensions, whereas a Bose-Einstein as well as a Fermi-Dirac factor appear in the detector response when the dimension of spacetime is odd. Moreover, we find that, it is possible to interpolate between the Bose-Einstein and the Fermi-Dirac distributions in odd spacetime dimensions by suitably adjusting the relative strengths of the detector's coupling to the odd and the even powers of the scalar field. We point out that the response of the detector is always thermal and we, finally, close by stressing the apparent nature of the appearance of the Fermi-Dirac factor in the detector response.Comment: RevTeX, 7 page

    Motion plan changes predictably in dyadic reaching

    Get PDF
    Parents can effortlessly assist their child to walk, but the mechanism behind such physical coordination is still unknown. Studies have suggested that physical coordination is achieved by interacting humans who update their movement or motion plan in response to the partner's behaviour. Here, we tested rigidly coupled pairs in a joint reaching task to observe such changes in the partners' motion plans. However, the joint reaching movements were surprisingly consistent across different trials. A computational model that we developed demonstrated that the two partners had a distinct motion plan, which did not change with time. These results suggest that rigidly coupled pairs accomplish joint reaching movements by relying on a pre-programmed motion plan that is independent of the partner's behaviour
    • …
    corecore