41 research outputs found

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets

    Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment

    Get PDF

    Prominence of NUDT15 genetic variation associated with 6-mercaptopurine tolerance in a genome-wide association study of Japanese children with acute lymphoblastic leukaemia

    Get PDF
    Inherited genetic variation is associated with 6-mercaptopurine (6-MP) dose reduction and frequent toxicities induced by 6-MP. However, the tolerable dose for 6-MP is not fully predicted by the known variation in NUDT15 and TPMT among Asian children with acute lymphoblastic leukaemia (ALL). We performed a genome-wide association study (GWAS) related to 6-MP dose among Japanese children with ALL. This GWAS comprised 224 patients previously enrolled in Tokyo Children's Cancer Study Group clinical studies with replication attempted in 55 patients. Genome-wide single nucleotide polymorphism (SNP) genotypes were evaluated for association with average 6-MP dose during the initial 168 days of maintenance therapy. Possible associations were observed across five gene-coding regions, among which only variants at 13q14.2 were significant and replicated genome-wide (rs116855232, NUDT15, beta = -10.99, p = 3.7 x 10(-13)). Notable findings were observed for variants in AFF3 (rs75364948, p = 2.05 x 10(-6)) and CHST11 (rs1148407, p = 2.09 x 10(-6)), but were not replicated possibly due to small numbers. A previously reported candidate SNP in MTHFR was associated with higher average 6-MP dose (rs1801133, p = 0.045), and FOLH1 (rs12574928) was associated in an evaluation of candidate regions (p(adjust) = 0.013). This study provides strong evidence that rs116855232 in NUDT15 is the genetic factor predominantly associated with 6-MP tolerable dose in children in Japan

    Combined inhibition of XIAP and BCL2 drives maximal therapeutic efficacy in genetically diverse aggressive acute myeloid leukemia

    No full text
    Aggressive therapy-resistant and refractory acute myeloid leukemia (AML) has an extremely poor outcome. By analyzing a large number of genetically complex and diverse, primary high-risk poor-outcome human AML samples, we identified specific pathways of therapeutic vulnerability. Through drug screens followed by extensive in vivo validation and genomic analyses, we found inhibition of cytosolic and mitochondrial anti-apoptotic proteins XIAP, BCL2 and MCL1, and a key regulator of mitosis, AURKB, as a vulnerability hub based on patient-specific genetic aberrations and transcriptional signatures. Combinatorial therapeutic inhibition of XIAP with an additional patient-specific vulnerability eliminated established AML in vivo in patient-derived xenografts (PDXs) bearing diverse genetic aberrations, with no signs of recurrence during off-treatment follow-up. By integrating genomic profiling and drug-sensitivity testing, this work provides a platform for a precision-medicine approach for treating aggressive AML with high unmet need

    Regional evaluation of childhood acute lymphoblastic leukemia genetic susceptibility loci among Japanese

    Get PDF
    Genome-wide association studies (GWAS) performed mostly in populations of European and Hispanic ancestry have confirmed an inherited genetic basis for childhood acute lymphoblastic leukemia (ALL), but these associations are less clear in other races/ethnicities. DNA samples from ALL patients (aged 0–19 years) previously enrolled onto a Tokyo Children’s Cancer Study Group trial were collected during 2013–2015, and underwent single nucleotide polymorphism (SNP) microarray genotyping resulting in 527 B-cell ALL for analysis. Cases and control data for 3, 882 samples from the Nagahama Study Group and Aichi Cancer Center Study were combined, and association analyses across 10 previous GWAS-identified regions were performed after targeted SNP imputation. Linkage disequilibrium (LD) patterns in Japanese and other populations were evaluated using the varLD score based on 1000 Genomes data. Risk associations for ARID5B (rs10821936, OR = 1.84, P = 6 × 10⁻¹⁷) and PIP4K2A (rs7088318, OR = 0.76, P = 2 × 10⁻⁴) directly transferred to Japanese, and the IKZF1 association was detected by an alternate SNP (rs1451367, OR = 1.52, P = 2 × 10⁻⁶). Marked regional LD differences between Japanese and Europeans was observed for most of the remaining loci for which associations did not transfer, including CEBPE, CDKN2A, CDKN2B, and ELK3. This study represents a first step towards characterizing the role of genetic susceptibility in childhood ALL risk in Japanese
    corecore