411 research outputs found

    Method for classifying ceramic powder

    Get PDF
    Under the invented method, powder A of particles of less than 10 microns, and carrier powder B, whose average particle diameter is more than five times that of powder A, are premixed so that the powder is less than 40 wt.% of the total mixture, before classifying

    Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars

    Full text link
    We investigate the stability of differentially rotating proto-neutron stars (PNSs) with a toroidal magnetic field. Stability criteria for nonaxisymmetric MHD instabilities are derived using a local linear analysis. PNSs are expected to have much stronger radial shear in the rotation velocity compared to normal stars. We find that nonaxisymmetric magnetorotational instability (NMRI) with a large azimuthal wavenumber mm is dominant over the kink mode (m=1m=1) in differentially rotating PNSs. The growth rate of the NMRI is of the order of the angular velocity Ω\Omega which is faster than that of the kink-type instability by several orders of magnitude. The stability criteria are analogous to those of the axisymmetric magnetorotational instability with a poloidal field, although the effects of leptonic gradients are considered in our analysis. The NMRI can grow even in convectively stable layers if the wavevectors of unstable modes are parallel to the restoring force by the Brunt-V\"ais\"al\"a oscillation. The nonlinear evolution of NMRI could amplify the magnetic fields and drive MHD turbulence in PNSs, which may lead to enhancement of the neutrino luminosity.Comment: 24pages, 7figures, Accepted for publication in the Astrophysical Journal (December 12, 2005

    Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates

    Get PDF
    Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300−700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells

    ABCC11 (ATP-binding cassette, sub-family C (CFTR/MRP), member 11)

    Get PDF
    Review on ABCC11, with data on DNA/RNA, on the protein encoded and where the gene is implicated

    A review of astrophysics experiments on intense lasers

    Get PDF
    Astrophysics has traditionally been pursued at astronomical observatories and on theorists’ computers. Observations record images from space, and theoretical models are developed to explain the observations. A component often missing has been the ability to test theories and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively tested against data. We describe here several areas of astrophysics—supernovae, supernova remnants, gamma-ray bursts, and giant planets—where laser experiments are under development to test our understanding of these phenomena. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71013/2/PHPAEN-7-5-1641-1.pd
    • …
    corecore