8 research outputs found

    Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells.

    Get PDF
    Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for colorectal cancer (CRC). A molecular understanding of the functional consequences of this genetic variation is complicated because most GWAS SNPs are located in non-coding regions. We used epigenomic information to identify H3K27Ac peaks in HCT116 colon cancer cells that harbor SNPs associated with an increased risk for CRC. Employing CRISPR/Cas9 nucleases, we deleted a CRC risk-associated H3K27Ac peak from HCT116 cells and observed large-scale changes in gene expression, resulting in decreased expression of many nearby genes. As a comparison, we showed that deletion of a robust H3K27Ac peak not associated with CRC had minimal effects on the transcriptome. Interestingly, although there is no H3K27Ac peak in HEK293 cells in the E7 region, deletion of this region in HEK293 cells decreased expression of several of the same genes that were downregulated in HCT116 cells, including the MYC oncogene. Accordingly, deletion of E7 causes changes in cell culture assays in HCT116 and HEK293 cells. In summary, we show that effects on the transcriptome upon deletion of a distal regulatory element cannot be predicted by the size or presence of an H3K27Ac peak

    Enhanced Responses to Angiogenic Cues Underlie the Pathogenesis of Hereditary Hemorrhagic Telangiectasia 2

    No full text
    Hereditary Hemorrhagic Telangiectasia (HHT) is a genetic vascular disease in which arteriovenous malformations (AVMs) manifest in skin and multiple visceral organs. HHT is caused by heterozygous mutations in endoglin (ENG), activin receptor-like kinase 1 (ALK1), or SMAD4. ALK1 regulates angiogenesis, but the precise function of ALK1 in endothelial cells (ECs) remains elusive. Since most blood vessels of HHT patients do not produce pathological vascular lesions, ALK1 heterozygous ECs may be normal unless additional genetic or environmental stresses are imposed. To investigate the cellular and biochemical phenotypes of Alk1-null versus Alk1-heterozygous ECs, we have generated pulmonary EC lines in which a genotype switch from the Alk1-conditional allele (Alk12f) to the Alk1-null allele (Alk11f) can be induced by tamoxifen treatment. Alk1-null (1 f/1 f) ECs displayed increased migratory properties in vitro in response to bFGF compared with Alk1-het (2 f/1 f) ECs. The 1 f/1 f-ECs formed a denser and more persistent tubular network as compared with their parental 2 f/1 f-ECs. Interestingly, the response to BMP-9 on SMAD1/5 phosphorylation was impaired in both 2 f/1 f- and 1 f/1 f-ECs at a comparable manner, suggesting that other factors in addition to SMADs may play a crucial role for enhanced angiogenic activity in 1 f/1 f-ECs. We also demonstrated in vivo that Alk1-deficient ECs exhibited high migratory and invasive properties. Taken together, these data suggest that enhanced responses to angiogenic cues in ALK1-deficient ECs underlie the pathogenesis of HHT2. © 2013 Choi et al

    Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells

    Get PDF
    Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for colorectal cancer (CRC). A molecular understanding of the functional consequences of this genetic variation is complicated because most GWAS SNPs are located in non-coding regions. We used epigenomic information to identify H3K27Ac peaks in HCT116 colon cancer cells that harbor SNPs associated with an increased risk for CRC. Employing CRISPR/Cas9 nucleases, we deleted a CRC risk-associated H3K27Ac peak from HCT116 cells and observed large-scale changes in gene expression, resulting in decreased expression of many nearby genes. As a comparison, we showed that deletion of a robust H3K27Ac peak not associated with CRC had minimal effects on the transcriptome. Interestingly, although there is no H3K27Ac peak in HEK293 cells in the E7 region, deletion of this region in HEK293 cells decreased expression of several of the same genes that were downregulated in HCT116 cells, including the MYC oncogene. Accordingly, deletion of E7 causes changes in cell culture assays in HCT116 and HEK293 cells. In summary, we show that effects on the transcriptome upon deletion of a distal regulatory element cannot be predicted by the size or presence of an H3K27Ac peak

    Enhanced Responses to Angiogenic Cues Underlie the Pathogenesis of Hereditary Hemorrhagic Telangiectasia 2

    Get PDF
    <div><p>Hereditary Hemorrhagic Telangiectasia (HHT) is a genetic vascular disease in which arteriovenous malformations (AVMs) manifest in skin and multiple visceral organs. HHT is caused by heterozygous mutations in endoglin (<i>ENG</i>), activin receptor-like kinase 1 (<i>ALK1</i>), or <i>SMAD4</i>. ALK1 regulates angiogenesis, but the precise function of ALK1 in endothelial cells (ECs) remains elusive. Since most blood vessels of HHT patients do not produce pathological vascular lesions, <i>ALK1</i> heterozygous ECs may be normal unless additional genetic or environmental stresses are imposed. To investigate the cellular and biochemical phenotypes of <i>Alk1</i>-null versus <i>Alk1</i>-heterozygous ECs, we have generated pulmonary EC lines in which a genotype switch from the <i>Alk1</i>-conditional allele (<i>Alk1</i><sup>2f</sup>) to the <i>Alk1</i>-null allele (<i>Alk1</i><sup>1f</sup>) can be induced by tamoxifen treatment. <i>Alk1</i>-null (1 f/1 f) ECs displayed increased migratory properties <i>in vitro</i> in response to bFGF compared with <i>Alk1</i>-het (2 f/1 f) ECs. The 1 f/1 f-ECs formed a denser and more persistent tubular network as compared with their parental 2 f/1 f-ECs. Interestingly, the response to BMP-9 on SMAD1/5 phosphorylation was impaired in both 2 f/1 f- and 1 f/1 f-ECs at a comparable manner, suggesting that other factors in addition to SMADs may play a crucial role for enhanced angiogenic activity in 1 f/1 f-ECs. We also demonstrated <i>in vivo</i> that <i>Alk1</i>-deficient ECs exhibited high migratory and invasive properties. Taken together, these data suggest that enhanced responses to angiogenic cues in ALK1-deficient ECs underlie the pathogenesis of HHT2.</p></div
    corecore