28 research outputs found

    Structural evolution in the neutron-rich nuclei 106Zr and 108Zr

    Get PDF
    The low-lying states in 106Zr and 108Zr have been investigated by means of {\beta}-{\gamma} and isomer spectroscopy at the RI beam factory, respectively. A new isomer with a half-life of 620\pm150 ns has been identified in 108Zr. For the sequence of even-even Zr isotopes, the excitation energies of the first 2+ states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The deformed ground state of 108Zr indicates that a spherical sub-shell gap predicted at N = 70 is not large enough to change the ground state of 108Zr to the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is also discussed.Comment: 10 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Transcriptional Profiling of Chondrodysplasia Growth Plate Cartilage Reveals Adaptive ER-Stress Networks That Allow Survival but Disrupt Hypertrophy

    Get PDF
    Metaphyseal chondrodysplasia, Schmid type (MCDS) is characterized by mild short stature and growth plate hypertrophic zone expansion, and caused by collagen X mutations. We recently demonstrated the central importance of ER stress in the pathology of MCDS by recapitulating the disease phenotype by expressing misfolding forms of collagen X (Schmid) or thyroglobulin (Cog) in the hypertrophic zone. Here we characterize the Schmid and Cog ER stress signaling networks by transcriptional profiling of microdissected mutant and wildtype hypertrophic zones. Both models displayed similar unfolded protein responses (UPRs), involving activation of canonical ER stress sensors and upregulation of their downstream targets, including molecular chaperones, foldases, and ER-associated degradation machinery. Also upregulated were the emerging UPR regulators Wfs1 and Syvn1, recently identified UPR components including Armet and Creld2, and genes not previously implicated in ER stress such as Steap1 and Fgf21. Despite upregulation of the Chop/Cebpb pathway, apoptosis was not increased in mutant hypertrophic zones. Ultrastructural analysis of mutant growth plates revealed ER stress and disrupted chondrocyte maturation throughout mutant hypertrophic zones. This disruption was defined by profiling the expression of wildtype growth plate zone gene signatures in the mutant hypertrophic zones. Hypertrophic zone gene upregulation and proliferative zone gene downregulation were both inhibited in Schmid hypertrophic zones, resulting in the persistence of a proliferative chondrocyte-like expression profile in ER-stressed Schmid chondrocytes. Our findings provide a transcriptional map of two chondrocyte UPR gene networks in vivo, and define the consequences of UPR activation for the adaptation, differentiation, and survival of chondrocytes experiencing ER stress during hypertrophy. Thus they provide important insights into ER stress signaling and its impact on cartilage pathophysiology

    Search for spin-orbit-force reduction at <sup>106,108</sup>Zr around r-process path

    No full text
    Shell gap at the magic number N = 82 is important to reproduce the 2nd peak of r-process abundance. If a spin-orbit force is reduced in a very neutron-rich region, a shell quenching at N = 82 and a new shell closure at N = 70 are predicted. A shell evolution by the spin-orbit-force reduction can be searched for through the shape evolution of Zr isotopes around an expected double magic nuclei, 110Zr(Z=40,N=70). We performed β-γ and isomer spectroscopy at RIBF to observe low-lying states in 106,108Zr. The present results indicate a well deformed shape for 106,108Zr. The drastic reduction of the spin-orbit force most likely does not occur around 110Zr on an r-process path. © 2012 American Institute of Physics

    β-Decay Half-Lives of Very Neutron-Rich Kr to Tc Isotopes on the Boundary of the r-Process Path: An Indication of Fast r-Matter Flow

    Get PDF
    The β-decay half-lives of 38 neutron-rich isotopes from 36Kr to 43Tc have been measured; the half-lives of 100Kr, 103–105Sr, 106–108Y, 108–110Zr, 111,112Nb, 112–115Mo, and 116,117Tc are reported here. The results when compared with previous standard models indicate an overestimation in the predicted half-lives by a factor of 2 or more in the A≈110 region. A revised model based on the second generation gross theory of β decay better predicts the measured half-lives and suggests a more rapid flow of the rapid neutron-capture process (r-matter flow) through this region than previously predicted
    corecore