21 research outputs found

    Solar Pumping of Fiber Lasers with Solid-State Luminescent Concentrators: Design Optimization by Ray Tracing

    Get PDF
    Solar-pumped lasers (SPLs) typically couple sunlight into the laser cavity using focusing optics and solar tracking. Luminescent solar concentrators (LSC) are an alternative, fully planar, scalable pump source that can concentrate diffuse light. For liquid LSC-based SPLs, reflective cavities have been used to trap light and pump a Nd3+^{3+}-doped silica fiber. Here, three solid-state LSC-based SPL designs, in addition to the reflective cavity making use of total internal reflection, are analyzed by ray-tracing simulations. Results are compared to a liquid LSC reference, also used for validating simulations. Substituting the liquid-state LSC for a solid-state LSC (with the fiber placed inside) allows a 7-fold enhancement of the gain coefficient, corresponding to a 30-fold enhancement of the laser output power. An additional 4-fold increase of the output power is possible with a fiber of kilometers length. These results show a roadmap for realizing SPLs with output powers on the order of 2.8 W m2^{-2} under terrestrial sunlight, while keeping an identical reflective cavity used for the liquid LSC design. In addition, room-temperature operation should be possible with certain solid LSC designs, and the necessity for a reflective cavity comprised of costly dielectric mirrors may be relieved

    A fully planar solar pumped laser based on a luminescent solar collector

    Get PDF
    A solar-pumped laser (SPL) that converts sunlight directly into a coherent and intense laser beam generally requires a large concentrating lens and precise solar tracking, thereby limiting its potential utility. Here, we demonstrate a fully-planar SPL without a lens or solar tracking. A Nd3+-doped silica fiber is coiled into a cylindrical chamber filled with a sensitizer solution, which acts as a luminescent solar collector. The body of the chamber is highly reflective while the top window is a dichroic mirror that transmits incoming sunlight and traps the fluorescence emitted by the sensitizer. The laser-oscillation threshold was reached at a natural sunlight illumination of 60% on the top window. Calculations indicated that a solar-to-laser power-conversion efficiency could eventually reach 8%. Such an SPL has potential applications in long-term renewable-energy storage or decentralised power supplies for electric vehicles and Internet-of-Things devices

    Visually Attractive and High-Power-Retention Solar Modules by Coloring with Automotive Paints

    No full text
    The automotive painting technique is highly advantageous for coloring solar modules, because it enables the modules to be visually attractive over a large area, numerous colors can be applied, and they are highly durable. Herein, we present a high-performance solar module colored using an automotive painting technique. We coated a dilute automotive pigment, the high-transmittance mica pigment, with a clear coat material on a crystalline Si solar module to generate blue color. Our measurements show that a pigment weight concentration of around 10% with the mica pigment is suitable for painting the solar modules, because it enables visual attractiveness while retaining over 80% of the output power, compared to the original solar module. We believe that the technique proposed herein can considerably increase the installable area of solar modules on a car body

    Curve-Correction Factor for Characterization of the Output of a Three-Dimensional Curved Photovoltaic Module on a Car Roof

    No full text
    For modeling the energy generation of three-dimensional car roof photovoltaic (PV) panels, it is essential to define a scientifically accurate method to model the amount of solar irradiance received by the panel. Additionally, the average annual irradiance incident on car roofs must be evaluated, because the PV module is often shaded during driving and when parked. The curve-correction factor, which is a unique value depending on the three-dimensional curved shape of the PV module, is defined in this paper. The curve-correction factor was calculated using a ray-trace simulator. It was found that the shape of the curved surface affected the curve-correction factor. The ratio of the projection area to the curved surface area of most car roofs is 0.85⁻0.95, and the annual curve-correction factor lies between 0.70 and 0.90. The annual irradiance incident on car roofs was evaluated using a mobile multipyranometer array system for one year (September 2017⁻August 2018). It is estimated that the effective annual solar radiation for curved PV modules is 2.53⁻3.52 kWh m−2/day

    Evaluation of Potency Spent Coffee Grounds for Make Black Compost

    No full text
    The aim for this research is to make black compost from spent coffee grounds (SCG). The content of hemicellulose and lignin from SCG were 37.28% and 22.45%. For mineral content, Potassium (3 g/kg) is the most abundant element in spent coffee ground, followed by calcium (1.23 g/kg), magnesium (1.11 g/kg), phosphorus (0.89 g/kg) and natrium (0.7 g/kg). SCG also contains Carbon and Nitrogen ratios 1:19.5 which approaches the C / N ratio of the soil 1: 20. Composting process in aerobic condition for 2 months using Fungi, Bacillus and Lactic Acid Bacteria activator, produce black compost with good characteristic for plant and soil, such as C/N ratio under 1:10 and pH around 6 to 9

    Nitrogen Balance in Forage Rice (Oryza sativa L. cv. Tachisuzuka) Cultivation in Pots with Animal Manure Application

    No full text
    Experiments were conducted to evaluate the nitrogen (N) balance in forage rice cultivation using animal manure in 1/2,000a Wagner pots in a greenhouse. The cattle manure and poultry manure were applied at 3 levels of N (0, 14, 28 g available N m–2) without additional chemical fertilizer application. The pots were designed to simulate the fluid percolation in the paddy field. The results indicated increasing levels of N input improved plant height, tiller number, SPAD value and biomass (straw, grain and root) production, however, N leaching from soil (Andosols) due to percolating water also increased. The planting of rice plants proved to reduce 30% of the N leaching loss. N use efficiency, the ratio of N uptake by plant per unit N application, decreased in higher N application. The N uptake by the above-ground parts occupied about 66% of the whole plants

    Nitrogen Balance in Forage Rice ( Oryza sativa

    No full text

    Nitrogen Balance in Forage Rice (Oryza sativa L. cv. Tachisuzuka) Cultivation in Pots with Animal Manure Application

    No full text
    Abstract: Experiments were conducted to evaluate the nitrogen (N) balance in forage rice cultivation using animal manure in 1/2,000a Wagner pots in a greenhouse. The cattle manure and poultry manure were applied at 3 levels of N (0, 14, 28 g available N m–2) without additional chemical fertilizer application. The pots were designed to simulate the fluid percolation in the paddy field. The results indicated increasing levels of N input improved plant height, tiller number, SPAD value and biomass (straw, grain and root) production, however, N leaching from soil (Andosols) due to percolating water also increased. The planting of rice plants proved to reduce 30% of the N leaching loss. N use efficiency, the ratio of N uptake by plant per unit N application, decreased in higher N application. The N uptake by the above-ground parts occupied about 66% of the whole plants. Key words: Animal manure, Biomass production, Forage rice, N balance, N leaching
    corecore