12 research outputs found

    Research on road identification method in Anti-lock Braking System

    Get PDF
    AbstractRoad identification is an important premise to the anti-lock function. The ABS control algorithm is put forward on the basis of the analysis of the ABS control process. Combining with the first pressurization time, the dropped wheel speed and the slope of the dropped speed at the end of decompression, a road identification method is put forward. The vehicle road test verification is conducted. The result indicates that the method can achieve real-time identification to various road conditions

    Personalized Collision Avoidance Control for Intelligent Vehicles Based on Driving Characteristics

    No full text
    Collision avoidance has been widely researched in the field of intelligent vehicles (IV). However, the majority of research neglects the individual driver differences. This paper introduced a novel personalized collision avoidance control (PCAC) strategy for IV based on driving characteristics (DC), which can better satisfy various scenarios and improve drivers’ acceptance. First, the driver’s DC is initially classified into four types using K-means clustering, followed by the application of the analytic hierarchy process (AHP) method to construct the DC identification model for the PCAC design. Then, a novel PCAC is integrated with a preview-follower control (PFC) module, an active rear steering (ARS) module, and a forward collision control (FCC) module to ensure individual requirements and driving stability. Moreover, simulations verified the validity of the developed PCAC in terms of path tracking, lateral acceleration, and yaw rate. The research results indicate that DC can be identified effectively through APH, and PCAC based on DC can facilitate the development of intelligent driving vehicles with superior human acceptance performance

    Extended State Observer Based Adaptive Back-Stepping Sliding Mode Control of Electronic Throttle in Transportation Cyber-Physical Systems

    No full text
    Considering the high accuracy requirement of information exchange via vehicle-to-vehicle (V2V) communications, an extended state observer (ESO) is designed to estimate the opening angle change of an electronic throttle (ET), wherein the emphasis is placed on the nonlinear uncertainties of stick-slip friction and spring in the system as well as the existence of external disturbance. In addition, a back-stepping sliding mode controller incorporating an adaptive control law is presented, and the stability and robustness of the system are analyzed using Lyapunov technique. Finally, numerical experiments are conducted using simulation. The results show that, compared with back-stepping control (BSC), the proposed controller achieves superior performance in terms of the steady-state error and rising time

    Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing

    No full text
    Multi-camera systems are widely applied in the three dimensional (3D) computer vision, especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-camera systems are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-camera systems based on transparent glass checkerboards and ray tracing is described, and is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera are obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on the other side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce a calibration error. A multi-camera calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of the four-camera system are 0.00007 and 0.4543 pixels, respectively. The proposed method is flexible, highly accurate, and simple to carry out

    Emergency collision avoidance strategy for autonomous vehicles based on steering and differential braking

    No full text
    Abstract This paper develops a novel integrated collision avoidance strategy for autonomous vehicles in an emergency based on steering and braking. Specifically, the framework of the collision avoidance strategy is composed of two parts: an up-level decision-making layer and a low-level controller layer. The purpose of the up-level is to select the appropriate control strategy based on the vehicle information, and the low-level is to drive the vehicle according to the instructions generated by the up-level. More concretely, a novel control strategy is proposed by integrating four-wheel steering, active rear steering, and differential braking with guaranteed path-tracking accuracy and driving stability by adaptive model predictive control (AMPC). Finally, extensive co-simulations in MATLAB/Simulink and CarSim are conducted to verify the effectiveness of the proposed collision avoidance strategy in terms of tracking error, yaw rate, and roll angle

    Mingchi_307007_code.zip

    No full text
    The source code of the paper "Accurate calibration of multi-camera system based on flat refractive geometry" (Manuscript ID: 307007
    corecore