5 research outputs found

    Assessment of the Mechanical and Microstructural Performance of Waste Kraft Fibre Reinforced Cement Composite Incorporating Sustainable Eco-Friendly Additives

    Get PDF
    This study investigates the influence of limestone powder and metakaolin as sustainable eco-friendly additives on the properties and behavior of cementitious composite boards, with a focus on mechanical strength, physical properties, and microstructural characteristics. The experimental investigation begins with the characterization of the raw materials, including limestone powder, and metakaolin, to assess their particle sizes, elemental composition, and microstructural features. Cement composite boards were fabricated using an innovatively developed lab-simulated vacuum dewatering process, by varying the proportions of limestone powder and metakaolin as partial replacements for cement, along with waste kraft fibres as reinforcement. Mechanical testing was conducted to evaluate the flexural strength and behaviour of the composite boards according to standardized procedures. A microstructural analysis was performed using scanning electron microscopy (SEM) to examine the effect of additives on the cementitious matrix, fibrematrix interaction, and hydration products. The findings from the experimental study reveal insights into the influence of limestone powder and metakaolin on the mechanical properties and microstructure of waste kraft fibre-reinforced cement composite boards. Our analysis of the results shows that adding 9% limestone powder as partial cement replacement produces a 24% and 50% enhancement in flexural strength at 7 and 28 days of hydration, while that of metakaolin as partial cement replacement was optimum at 6% with an enhancement of 4% and 36%, respectively, at 7 and 28 days of hydration. The implications of these findings for the development of sustainable cementitious composite are discussed, including the potential benefits of using limestone powder and metakaolin as supplementary cementitious materials in waste kraft fibre-reinforced cement composite boards. Finally, recommendations for optimizing additive proportions are also provided to enhance the understanding and application of these materials in the construction and building industries

    Optimizing the mechanical properties of cement composite boards reinforced with cellulose pulp and bamboo fibers for building applications in low-cost housing estates

    Get PDF
    Africa is the third-richest continent in the world in terms of bamboo species. Despite these laudable natural resources, most African countries still use asbestos cement board as one of their major building materials. This is chiefly due to the high cost of equipment and technologies associated with non-asbestos-fiber cement board production. The current research seeks to underscore the possibility of utilizing these massive continent resources for non-asbestos-fiber cement board production by employing the existing production process in the asbestos cement industries via an innovatively developed laboratory-simulated Hatschek process. Non-asbestos-fiber cement boards incorporating kraft and bamboo fibers were successfully produced in the laboratory using this innovative method based on Hatschek technology, with natural fibre addition in the range of 2–6 wt.%. Experimental results revealed that the Flexural strength and deflection of the board improved significantly, producing optimum values of 10.41 MPa and 2.0 mm, respectively for composite board reinforced with 10 wt.% and 6 wt.% of kraft pulp and bamboo fibers, respectively. The SEM morphology of the fractured surfaces revealed the mode of composite fracture as well as good interaction at the fiber–matrix interface. Overall, the mechanical properties of the developed composite boards satisfy the minimum requirements of relevant standards based on fiber cement flat sheets and can be employed for internal building applications in low-cost housing estates in developing countries. The outcome of this research indicates that the current industrial production process based on Hatschek technology can be employed for non-asbestos-fiber cement board production using the studied natural fiber.This research was funded by the Tertiary Education Trust Fund (TETFund), Nigeria, through the Academic Staff Training and Development (AST&D) scholarship grant number TETF/ES/ UNIV/ONDO STATE/TSAS/2019/Vol.1

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Influence of processed waste bagasse fiber-stone dust-6063 aluminum alloy particle on the characteristics of hybrid reinforced recycled HDPE composites

    No full text
    A novel hybrid composites material was developed through the compression moulding technique by adding bagasse fiber, stone-dust and 6063 aluminum alloy (Al-Mg-Si) particles to recycled high density polyethylene (rHDPE) matrix. The bagasse fibers were treated with 0.5M Sodium Hydroxide solution at a temperature of 50 0C for 2hours while the stone-dust and 6063 aluminum alloy (Al-Mg-Si) particles were sieved to particle sizes of ˂75 µm and ˂250 µm, respectively before blending with the matrix. The work investigates comparatively, the influence of bagasse fiber-stone dust (hybrid-of-2) and bagasse fiber-stone dust-Al-Mg-Si particles (hybrid-of-3) on composite formation systems for reinforced rHDPE composites. The properties of recycled HDPE and rHDPE composites were thoroughly investigated through selected mechanical properties, wear resistance and thermal conductivity tests. The results showed that the addition of bagasse fiber-stone dust-Al-Mg-Si alloy particles improve the mechanical, wear and thermal properties of the composites. The ultimate tensile strength was enhanced by 39% having a UTS value of 32 MPa, tensile modulus by 13% with a value of 98 MPa and wear resistance by 53% with a value of 0.8 g. SEM images showed that these reinforcements blended more properly when lower contents were added. This was responsible for the enhancement observed in the mechanical properties of the hybrid-of-3 reinforced composite. Thus, composites from combination of waste materials can be projected for the development of new materials thereby reducing the creation of new ones
    corecore