18 research outputs found

    Experimental Impacts into Strength-Layered Targets: Crater Morphology and Morphometry

    Get PDF
    Impact cratering is a fundamental physical process that has dominated the evolution and modification of nearly every planetary surface in the Solar System. Impact craters serve as a means to probe the subsurface structure of a planetary body and provide hints about target surface properties. By examining small craters on the lunar maria and comparing these to experimental impacts in the laboratory, Oberbeck and Quaide first suggested that crater morphology can be used to estimate the thickness of a regolith layer on top of a more competent unit. Lunar craters show a morphological progression from a simple bowl shape to flat-floored and concentric craters as crater diameter increases for a given regolith thickness. This quantitative relationship is commonly used to estimate regolith thicknesses on the lunar surface and has also been explored via numerical and experimental studies. Here we report on a series of experimental impact craters formed in targets com-posed of a thin layer of loose sand on top of a stronger substrate at the Experimental Impact Laboratory at NASA Johnson Space Center

    Experimental Impacts into Strength-Layered Targets: Ejecta Kinematics

    Get PDF
    AImpact cratering has dominated the evolution and modification of planetary surfaces through-out the history of the solar system. Impact craters can serve as probes to understanding the details of a planetary subsurface; for example, Oberbeck and Quaide, suggested that crater morphology can be used to estimate the thickness of a regolith layer on top of a more competent unit. Lunar craters show a morphological progression from a simple bowl shape to flat-floored and concentric craters as crater diameter in-creases for a given regolith thickness. The final shape of the impact crater is a result of the subsurface flow-field initiated as the projectile transfers its energy and momentum to the target surface at the moment of impact. Therefore, when a regolith layer is present over a stronger substrate, such as is the case on the lunar surface, the substrate modifies the flow-field and thereby the excavation flow of the crater, which is reflected in the morphology of the final crater. Here we report on a series of experimental impacts into targets composed of a thin layer of loose sand on top of a stronger substrate. We use the Ejection-Velocity Measurement System developed to examine the ejecta kinematics during the formation of these craters

    Observations of multiple nuclear reaction histories and fuel-ion species dynamics in shock-driven inertial confinement fusion implosions

    No full text
    Fuel-ion species dynamics in hydrodynamiclike shock-driven DT3He-filled inertial confinement fusion implosion is quantitatively assessed for the first time using simultaneously measured D3He and DT reaction histories. These reaction histories are measured with the particle x-ray temporal diagnostic, which captures the relative timing between different nuclear burns with unprecedented precision (∼10 ps). The observed 50 +- 10 ps earlier D3He reaction history timing (relative to DT) cannot be explained by average-ion hydrodynamic simulations and is attributed to fuel-ion species separation between the D, T, and 3He ions during shock convergence and rebound. At the onset of the shock burn, inferred 3He/T fuel ratio in the burn region using the measured reaction histories is much higher as compared to the initial gas-filled ratio. As T and 3He have the same mass but different charge, these results indicate that the charge-to-mass ratio plays an important role in driving fuel-ion species separation during strong shock propagation even for these hydrodynamiclike plasmas

    Observations of Multiple Nuclear Reaction Histories and Fuel-Ion Species Dynamics in Shock-Driven Inertial Confinement Fusion Implosions

    No full text
    Fuel-ion species dynamics in hydrodynamiclike shock-driven DT³He-filled inertial confinement fusion implosion is quantitatively assessed for the first time using simultaneously measured D³He and DT reaction histories. These reaction histories are measured with the particle x-ray temporal diagnostic, which captures the relative timing between different nuclear burns with unprecedented precision (∼10  ps). The observed 50±10  ps earlier D³He reaction history timing (relative to DT) cannot be explained by average-ion hydrodynamic simulations and is attributed to fuel-ion species separation between the D, T, and ³He ions during shock convergence and rebound. At the onset of the shock burn, inferred ³He/T fuel ratio in the burn region using the measured reaction histories is much higher as compared to the initial gas-filled ratio. As T and ³He have the same mass but different charge, these results indicate that the charge-to-mass ratio plays an important role in driving fuel-ion species separation during strong shock propagation even for these hydrodynamiclike plasmas.United States. Department of Energy (Grant DE-FC52-08NA28752
    corecore