50 research outputs found

    Single field-of-view tomographic imaging of 3D impurity emission distribution in magnetized edge plasma of LHD

    Get PDF
    A new tomographic scheme is proposed for reconstructing three dimensional (3D) impurity emission distributions from two dimensional (2D) measurements with a single field-of-view in the magnetized edge plasma in a Large Helical Device (LHD). The 2D image is obtained with a multi-channel fiber array spectrometer, which views the entire region of the edge stochastic magnetic layer of LHD, including divertor plates, divertor legs, the stochastic layer, and the last closed flux surface. The scheme introduces new regularization terms in the Lagrangian function, based on the transport feature in magnetized plasma that the transport parallel to the magnetic field lines is much faster than the transport across the magnetic field, thus assuming smooth distribution in the parallel direction. The scheme is benchmarked with the test data of 3D distribution in the measurement volume, where the effectiveness of the various regularization terms is surveyed and feasibility of the scheme is confirmed. The new scheme is applied to the experimental data in LHD for carbon impurity emissions of C1+ and C3+, where the obtained distributions are discussed taking into account the plasma wall interaction and charge dependence of ionization potentials

    Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells

    Get PDF
    Embryonic stem cells (ESCs) could potentially compensate for the lack of blood platelets available for use in transfusions. Here, we describe a new method for generating mouse ESC-derived platelets (ESPs) that can contribute to hemostasis in vivo. Flow cytometric sorting of cells from embryoid bodies on day 6 demonstrated that c-Kit+ integrin αIIb (αIIb)+ cells, but not CD31+ cells or vascular endothelial cadherin+ cells, are capable of megakaryopoiesis and the release of platelet-like structures by day 12. αIIbβ3-expressing ESPs exhibited ectodomain shedding of glycoprotein (GP)Ibα, GPV, and GPVI, but not αIIbβ3 or GPIbβ. ESPs showed impaired αIIbβ3 activation and integrin-mediated actin reorganization, critical events for normal platelet function. However, the administration of metalloproteinase inhibitors GM6001 or TAPI-1 during differentiation increased the expression of GPIbα, improving both thrombogenesis in vitro and posttransfusion recovery in vivo. Thus, the regulation of metalloproteinases in culture could be useful for obtaining high-quality, efficacious ESPs as an alternative platelet source for transfusions

    “Transmantle sign”を示す限局性皮質異形成における神経細胞の成熟と分化の未熟性:層特異的マーカー発現による解析

    Get PDF
    Transmantle dysplasia is a rare type of focal cortical dysplasia (FCD) characterized by expansion of the cortex from the deep white matter to the surface and in which there is a FCD IIA or IIB pathologic pattern. To characterize possible mechanisms underlying this regional disorder of radial migrating cells, we studied the expression patterns of neocortical layer-specific markers using immunohistochemistry in surgical specimens from 5 FCD IIA and 4 FCD IIB cases in children. All neuronal cells expressed the mature neuron marker MAP2/2B but not the microglia markers Iba-1 and CD68. Some layer-specific markers showed distinct expression patterns. TBR1-positive, SATB2-positive, and FOXP1-positive cells were diffusely distributed in the cortex and/or the white matter. TBR1-positive and FOXP1-positive cells were generally more numerous in FCD IIB than in FCD IIA and were mostly in the cortical molecular and upper layers. FOXP1-, FOXP2-, and CUTL1-positive cells also expressed the immature neuron marker, Nestin/PROX1, whereas TBR1-, CTIP2-, and SATB2-positive cells only expressed MAP2/2B. These data highlight differences between FCD IIB and FCD IIA with more cells having the immature marker in upper layer markers in the former. By analyzing layer-specific marker expression patterns, we identified apparent neuronal maturation differences between FCD IIA and FCD IIB in cases of transmantle dysplasia.博士(医学)・乙第1312号・平成25年5月29

    An Adenovirus Vector-Mediated Reverse Genetics System for Influenza A Virus Generation▿

    No full text
    Plasmid-based reverse genetics systems allow the generation of influenza A virus entirely from cloned cDNA. However, since the efficiency of virus generation is dependent on the plasmid transfection efficiency of cells, virus generation is difficult in cells approved for vaccine production that have low transfection efficiencies (e.g., Vero cells). Here we established an alternative reverse genetics system for influenza virus generation by using an adenovirus vector (AdV) which achieves highly efficient gene transfer independent of cell transfection efficiency. This AdV-mediated reverse genetics system will be useful for generating vaccine seed strains and for basic influenza virus studies

    Crystal structure of a four-layered [3.3](3,5)pyridinophane

    No full text
    The title compound, C40H46N2 {systematic name: 12,30-diazaheptacyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetraconta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodecaene}, has syn–anti–syn geometry wherein the two outer [3.3]metacyclophane (MCP) moieties have a syn geometry, and contain the facing benzene and pyridine rings at dihedral angles of 26.26 (10) and 26.46 (10)°, respectively. The rings of the central [3.3]MCP unit are not parallel, but orientated at a slight angle of 2.66 (9)°. Three bridging methylene groups are disordered over two sets of sites in a 0.60:0.40 ratio. In the crystal, the molecules are linked by C—H...N interactions and intermolecular C—H...π short contacts, generating a three-dimensional network

    Establishment of Canine RNA Polymerase I-Driven Reverse Genetics for Influenza A Virus: Its Application for H5N1 Vaccine Production▿

    No full text
    In the event of a new influenza pandemic, vaccines whose antigenicities match those of circulating strains must be rapidly produced. Here, we established an alternative reverse genetics system for influenza virus using the canine polymerase I (PolI) promoter sequence that works efficiently in the Madin-Darby canine kidney cell line, a cell line approved for human vaccine production. Using this system, we were able to generate H5N1 vaccine seed viruses more efficiently than can be achieved with the current system that uses the human PolI promoter in African green monkey Vero cells, thus improving pandemic vaccine production
    corecore