10 research outputs found

    Verification and validation of integrated simulation of energetic particles in fusion plasmas

    Get PDF
    This paper reports verification and validation of linear simulations of Alfvén eigenmodes in the current ramp phase of DIII-D L-mode discharge #159243 using gyrokinetic, gyrokinetic-MHD hybrid, and eigenvalue codes. Using a classical fast ion profile, all simulation codes find that reversed shear Alfvén eigenmodes (RSAE) are the dominant instability. The real frequencies from all codes have a coefficient of variation of less than 5% for the most unstable modes with toroidal mode number n  =  4 and 5. The simulated RSAE frequencies agree with experimental measurements if the minimum safety factor is adjusted, within experimental errors. The simulated growth rates exhibit greater variation, and simulations find that pressure gradients of thermal plasmas make a significant contribution to the growth rates. Mode structures of the dominant modes agree well among all codes. Moreover, using a calculated fast ion profile that takes into account the diffusion by multiple unstable modes, a toroidal Alfvén eigenmode (TAE) with n  =  6 is found to be unstable in the outer edge, consistent with the experimental observations. Variations of the real frequencies and growth rates of the TAE are slightly larger than those of the RSAE. Finally, electron temperature fluctuations and radial phase shifts from simulations show no significant differences with the experimental data for the strong n  =  4 RSAE, but significant differences for the weak n  =  6 TAE. The verification and validation for the linear Alfvén eigenmodes is the first step to develop an integrated simulation of energetic particles confinement in burning plasmas incorporating multiple physical processes

    High energy photon emission from wakefields

    No full text
    We present scalings of the frequency and intensity of the driver laser, as well as the plasma density of radiation from wakefield (self-injected electron betatron) and ponderomotive (laser field) mechanisms

    Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus

    No full text
    The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges

    DIII-D research towards establishing the scientific basis for future fusion reactors

    No full text
    DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (similar to 30 kPa) and stored energy (3.2 MJ) with H-98y2 approximate to 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric beta(TE) independent of current between q(95) = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses approximate to 0 injected torque and the operating space is more ITER-relevant. Finally, the high-beta(N) (<= 3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving similar to 40% divertor heat flux reduction using either argon or neon with P-tot up to 15 MW
    corecore