10 research outputs found

    Sox14 is essential for initiation of interneuron differentiation in the chick spinal cord

    Get PDF
    The neural tube comprises several different types of progenitors and postmitotic neurons that coordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. Taken together, Sox14 acts as a modulator of cell proliferation and an initiator protein for neuronal differentiation in the intermediate region of the neural tube

    Sox14 is essential for initiation of neuronal differentiation in the chick spinal cord

    No full text
    Background The neural tube comprises several different types of progenitors and postmitotic neurons that co-ordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. Results Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB2 subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. Conclusions Sox14 acts as a modulator of cell proliferation and is essential for initiation of neuronal differentiation in the chick neural tube

    Cytokine and chemokine multiplex analysis-based exploration for potential treatment and prognostic prediction in large-vessel vasculitis : A preliminary observational study

    No full text
    Large-vessel vasculitis (LVV) is subclassified into two phenotypes; Takayasu arteritis and giant cell arteritis. Although the pathogenesis of LVV is not fully established, IL-6-IL-17 axis and IL-12-IFN-gamma axis play critical roles in the disease development. We aimed to clarify the association between the disease state and cytokine/chemokine levels, to assess disease course as prognosis and to predict regulators in patients with LVV using the blood profiles of multiple cytokines/chemokines. This retrospective analysis comprised 35 LVV patients whose blood were collected, and multiplex cytokine/chemokine analysis with 28 analytes was performed. The differences of cytokines/chemokines corresponding disease status, upstream regulator analysis, pathway analysis and cluster analysis were conducted using the cytokines/chemokines profile. Relapse-free survival rate was calculated with Kaplan-Meier analysis in the classified clusters. In the robust analysis, IL-4, CCL2/MCP-1, TNFSF13/APRIL, TNFSF13B/BAFF, CHI3L1 and VEGF-A levels were significantly changed after treatment. Untreated LVV patients demonstrated activation of NF kappa B-related molecules and these patients are potentially treated with JAK/STAT inhibitors, anti-TNF-alpha inhibitors and IL-6 inhibitors. Cluster analysis in active LVV patients revealed two clusters including one with high blood levels of IL-1 beta, IL-6, IL-17, IL-23 and CCL20/MIP-3. A subgroup of the LVV patients showed activated IL-17 signature with high relapse frequency, and JAK/TyK2 inhibitors and IFN-gamma inhibitors were detected as potentially upstream inhibitors. Blood cytokine/chemokine profiles would be useful for prediction of relapse and potentially contributes to establish therapeutic strategy as precision medicine in LVV patients
    corecore