41 research outputs found

    Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata

    Get PDF
    Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata

    長期間の多職種連携による離床

    Get PDF
    Early mobilization is an effective way to improve the physical function of critically ill patients, but there are numerous barriers to mobilization. One such is an early ward transfer. Mobilization is often insufficient in a ward, and the patient cannot be liberated from mechanical ventilation. We experienced a case of a successfully liberated patient from prolonged mechanical ventilation in long-term mobilization as orchestrated by a multidisciplinary team in the ICU. A 45-year-old female was admitted to the ICU and placed on mechanical ventilation for acute respiratory distress syndrome(ARDS). We deployed a mobilization protocol, which was mostly restricted to passive exercise in the first 2 weeks after admission. On day 30, the patient recovered from unstable respiration, but could not be liberated from mechanical ventilation because of muscle weakness, diagnosed as ICU-acquired weakness. The patient was gradually mobilized and transferred to a chair on day 35, and she was able to stand on day 56. On day 65, she was completely liberated from mechanical ventilation and discharged from the ICU 70 days after her initial admission. Long-term mobilization is important for liberation of a patient from prolonged mechanical ventilation as well as early mobilization in the ICU

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species

    Get PDF
    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions

    DECIGO and DECIGO pathfinder

    Full text link

    FedFit: Server Aggregation Through Linear Regression in Federated Learning

    No full text
    We present a conceptually novel framework for Federated Learning (FL) called FedFit for a flexible solver to address FL problems. The FedFit framework consists of two components: model compression to upload a local model from a client to the server and the reconstruction of the compressed local model in the server. Clients upload a compressed local model using a “key” shared with the server to formulate the server aggregation in the FL as linear regression. Therefore, the parameters of the global model are updated through a linear regression solver in the server while naturally contributing to reducing upload costs from clients to the server. Thanks to our framework design, the server can flexibly utilize various established linear regression techniques to address some open problems of FL by considering server aggregation from a different perspective—linear regression. As an example of the broad applicability of our concept, we demonstrate the effectiveness of robust regression and LASSO regression implemented on FedFit, which can alleviate vulnerability issues against attacks on the global model from collapsed clients and introduce sparsity to the global model toward the reduction in model size, respectively

    Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata

    Get PDF
    Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata

    Effects of BARLEYmax and high-β-glucan barley line on short-chain fatty acids production and microbiota from the cecum to the distal colon in rats.

    No full text
    We investigated whether supplementation with the barley line BARLEYmax (Tantangara; BM), which contains three fermentable fibers (fructan, β-glucan, and resistant starch), modifies the microbiota in cecal and distal colonic digesta in addition to short-chain fatty acids (SCFAs) production more favorably than supplementation with a high-β-glucan barley line (BG012; BG). Male Sprague-Dawley rats were randomly divided into 3 groups that were fed an AIN-93G-based diet that contained 5% fiber provided by cellulose (control), BM or BG. Four weeks after starting the respective diets, the animals were sacrificed and digesta from the cecum, proximal colon and distal colon were collected and the SCFA concentrations were quantified. Microbiota in the cecal and distal colonic digesta were analyzed by 16S rRNA sequencing. The concentrations of acetate and n-butyrate in cecal digesta were significantly higher in the BM and BG groups than in the control group, whereas the concentration of total SCFAs in cecal digesta was significantly higher only in the BM group than in the control group. The concentrations of acetate and total SCFAs in the distal colonic digesta were significantly higher only in the BM group than in the control group. The abundance of Bacteroidetes in cecal digesta was significantly higher in the BM group than in the control group. In contrast, the abundance of Firmicutes in cecal digesta was significantly lower in the BM and BG groups than in the control group. These results indicated that BM increased the concentration of total SCFAs in the distal colonic digesta. These changes might have been caused by fructan and resistant starch in addition to β-glucan. In conclusion, fermentable fibers in BM reached the distal colon and modified the microbiota, leading to an increase in the concentration of total SCFAs in the distal colonic digesta, more effectively compared with the high-β-glucan barley line (BG)
    corecore