10,621 research outputs found
Two-Phase Thermodynamic Model for Efficient and Accurate Absolute Entropy of Water from Molecular Dynamics Simulations
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor−liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations
Experiments in fault tolerant software reliability
The reliability of voting was evaluated in a fault-tolerant software system for small output spaces. The effectiveness of the back-to-back testing process was investigated. Version 3.0 of the RSDIMU-ATS, a semi-automated test bed for certification testing of RSDIMU software, was prepared and distributed. Software reliability estimation methods based on non-random sampling are being studied. The investigation of existing fault-tolerance models was continued and formulation of new models was initiated
Bound states in two spatial dimensions in the non-central case
We derive a bound on the total number of negative energy bound states in a
potential in two spatial dimensions by using an adaptation of the Schwinger
method to derive the Birman-Schwinger bound in three dimensions. Specifically,
counting the number of bound states in a potential gV for g=1 is replaced by
counting the number of g_i's for which zero energy bound states exist, and then
the kernel of the integral equation for the zero-energy wave functon is
symmetrized. One of the keys of the solution is the replacement of an
inhomogeneous integral equation by a homogeneous integral equation.Comment: Work supported in part by the U.S. Department of Energy under Grant
No. DE-FG02-84-ER4015
Recommended from our members
A micro-electro-mechanical-system-based thermal shear-stress sensor with self-frequency compensation
By applying the micro-electro-mechanical-system (MEMS) fabrication technology, we developed a micro-thermal sensor to measure surface shear stress. The heat transfer from a polysilicon heater depends on the normal velocity gradient and thus provides the surface shear stress. However, the sensitivity of the shear-stress measurements in air is less than desirable due to the low heat capacity of air. A unique feature of this micro-sensor is that the heating element, a film 1 µm thick, is separated from the substrate by a vacuum cavity 2 µm thick. The vacuum cavity prevents the conduction of heat to the substrate and therefore improves the sensitivity by an order of magnitude. Owing to the low thermal inertia of the miniature sensing element, this shear-stress micro-sensor can provide instantaneous measurements of small-scale turbulence. Furthermore, MEMS technology allows us make multiple sensors on a single chip so that we can perform distributed measurements. In this study, we use multiple polysilicon sensor elements to improve the dynamic performance of the sensor itself. It is demonstrated that the frequency-response range of a constant-current sensor can be extended from the order of 100 Hz to 100 kHz
Design, fabrication, and testing of silicon microgimbals for super-compact rigid disk drives
This paper documents results related to design optimization, fabrication process refinement, and micron-level static/dynamic testing of silicon micromachined microgimbals that have applications in super-compact computer disk drives as well as many other engineering applications of microstructures and microactuators requiring significant out-of-plane motions. The objective of the optimization effort is to increase the in-plane to out-of-plane stiffness ratio in order to maximize compliance and servo bandwidth and to increase the displacement to strain ratio to maximize the shock resistance of the microgimbals, while that of the process modification effort is to simplify in order to reduce manufacturing cost. The testing effort is to characterize both the static and dynamic performance using precision instrumentation in order to compare various prototype designs
APPLE PREFERENCES, FORMULATION AND TESTING: RED DELICIOUS, MCINTOSH AND EMPIRE
Consumer/Household Economics,
- …