3 research outputs found

    Hybrid-Controlled Neurofuzzy Networks Analysis Resulting in Genetic Regulatory Networks Reconstruction

    Get PDF
    Reverse engineering of gene regulatory networks (GRNs) is the process of estimating genetic interactions of a cellular system from gene expression data. In this paper, we propose a novel hybrid systematic algorithm based on neurofuzzy network for reconstructing GRNs from observational gene expression data when only a medium-small number of measurements are available. The approach uses fuzzy logic to transform gene expression values into qualitative descriptors that can be evaluated by using a set of defined rules. The algorithm uses neurofuzzy network to model genes effects on other genes followed by four stages of decision making to extract gene interactions. One of the main features of the proposed algorithm is that an optimal number of fuzzy rules can be easily and rapidly extracted without overparameterizing. Data analysis and simulation are conducted on microarray expression profiles of S. cerevisiae cell cycle and demonstrate that the proposed algorithm not only selects the patterns of the time series gene expression data accurately, but also provides models with better reconstruction accuracy when compared with four published algorithms: DBNs, VBEM, time delay ARACNE, and PF subjected to LASSO. The accuracy of the proposed approach is evaluated in terms of recall and F-score for the network reconstruction task

    Evaluation of the Effectiveness of Herbal Components Based on Their Regulatory Signature on Carcinogenic Cancer Cells

    Get PDF
    Predicting cancer cells’ response to a plant-derived agent is critical for the drug discovery process. Recently transcriptomes advancements have provided an opportunity to identify regulatory signatures to predict drug activity. Here in this study, a combination of meta-analysis and machine learning models have been used to determine regulatory signatures focusing on differentially expressed transcription factors (TFs) of herbal components on cancer cells. In order to increase the size of the dataset, six datasets were combined in a meta-analysis from studies that had evaluated the gene expression in cancer cell lines before and after herbal extract treatments. Then, categorical feature analysis based on the machine learning methods was applied to examine transcription factors in order to find the best signature/pattern capable of discriminating between control and treated groups. It was found that this integrative approach could recognize the combination of TFs as predictive biomarkers. It was observed that the random forest (RF) model produced the best combination rules, including AIP/TFE3/VGLL4/ID1 and AIP/ZNF7/DXO with the highest modulating capacity. As the RF algorithm combines the output of many trees to set up an ultimate model, its predictive rules are more accurate and reproducible than other trees. The discovered regulatory signature suggests an effective procedure to figure out the efficacy of investigational herbal compounds on particular cells in the drug discovery process
    corecore