6 research outputs found

    A rule of mixtures approach for delamination damage analysis in composite materials

    Get PDF
    The present study aims at investigating the delamination behavior of laminated composites in different loading modes within a homogenization theory of mixtures. The delamination damage phenomenon is introduced at the bulk level by eliminating the explicit representation of interfaces. Potential delamination planes are identified according to the developed interfacial stresses, and damage evolution is computed for each mode independently through a stress-based formulation. An arc-length strategy is employed to solve equilibrium equations owing to the snap-back effects. Reliability of the adopted mixing theory, as a framework for integrating the delamination theory into, is assessed by comparing the results with the ones obtained from micromechanical models in a fiber metal laminate structure. Considering delamination, a good agreement is observed in mode I, mode II and mixed mode configurations by evaluating the results against available numerical and experimental data in thermoset and thermoplastic composite systems. The present method has the capability to be used in the conventional finite element codes with the number of elements kinematically needed in the thickness, regardless of the number of layers, which dramatically reduces the computational cost in modeling composites with large number of layers. The proposed approach is not intended to replace other exact methods at the coupon scale, however, its main application would be in modeling delamination on large scale systems with minimum loss of accuracy.Peer ReviewedPostprint (published version

    A comprehensive investigation of the low-velocity impact response of enhanced GFRP composites with single and hybrid loading of various types of nanoparticles

    No full text
    This study investigates the effects of incorporating various types of nanoparticles, both singularly and in hybrid form, on the low-velocity impact (LVI) response of glass fiber reinforced polymer (GFRP) composites. GFRP composites were fabricated using the hand lay-up method and different weight percentages (wt. %) of multi-walled carbon nanotubes (MWCNT), clay, TiO2, and CuO nanoparticles were added into the matrix of composites. To test the LVI response, 14 types of specimens were fabricated with single and hybrid nanoparticle loadings, and LVI tests were conducted using 5 and 10-cm span dimensions at two levels of subjected energy. The experimental results reveal that specimens with a single loading of MWCNT or nano-clay have a lower maximum contact force compared to pure specimens with fully rebounding behavior. This indicates that neither 5 nor 10 cm spans result in severe damages during the impact tests. Furthermore, incorporating more MWCNTs results in stiffer behavior and more brittleness. The study also explores the synergetic effect of adding hybrid nanoparticles in the fabricated composites and discusses the calculated results for absorbed energy. Finally, scanning electron microscopy (SEM) images are analyzed to evaluate the enhancement mechanisms resulting from the addition of nanoparticles to GFRP composite specimens
    corecore