8 research outputs found

    Air temperature trends, variability and extremes across the Solomon Islands: 1951-2011s

    Get PDF
    Past climatological studies .use only one or two local stations to describe the full climate of Solomon Islands. In this paper, we examined all available daily minimum and maximum surface air temperature data between 1951 and 2011 for all seven weather stations operated by the Solomon Islands Meteorological Service. Taro has the highest mean temperature (Tmean) at 27.5°C, owing its warmer climate to its proximity to the equator than other stations. Henderson at the central region averaged the least at 26.9°C during the same period. Honiara has the warmest Tmean on average from June through October due to its elevation. The overall annual Tmean for the country was 27.3°C with the maximum at 30.8°C and the minimum at 23.7°C. All seven stations show significant trend in Tmean, ranging from 0.14 to 0.39 °C/decade. Over three decades, the frequency of warm days (warm nights) increased by 2.2 days/decade (0.8 nights/decade) with a corresponding decrease of cool days (cool nights) by 0.4 days/decade (1.4 nights/decade). The climate of the Solomon Islands has warmed significantly between 1951 and 2011 with more warm days and nights, and fewer cool days and nights

    Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands

    Full text link
    BACKGROUND: Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. METHODS: Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. RESULTS: Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R2 skill scores. A highly significant negative correlation (R = - 0.86, R2 = 0.74, p < 0.05, n = 14) was found between October and December rainfall at Honiara and CMT in northern Guadalcanal for the subsequent January-June. This indicates that drier October-December periods are followed by higher malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively. CONCLUSION: This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions in northern Guadalcanal which allow sandbars to form across the mouths of estuaries which act to develop or increase stagnant brackish marshes in low rainfall periods. These are ideal habitats for the main mosquito vector, Anopheles farauti. High rainfall accumulations result in the flushing of these habitats, reducing their viability. The results of this study are now being used as the basis of a malaria early warning system which has been jointly implemented by the SIMS, NVBDCP and the Australian Bureau of Meteorology

    Subseasonal prediction framework for tropical cyclone activity in the Solomon Islands region

    No full text
    Recently, we developed seasonal prediction schemes with improved skill to predict tropical cyclone (TC) activity up to 3 months in advance for the Solomon Islands (SI) region (5°–15°S, 155°–170°E) using sophisticated Bayesian regression techniques. However, TC prediction at subseasonal timescale (i.e., 1–4 weeks in advance) is not being researched for that region despite growing demands from decision makers at sectoral level. In this paper, we first assess the feasibility of developing subseasonal prediction frameworks for the SI region using a pool of predictors that are known to affect TC activity in the region. We then evaluate multiple predictor combinations to develop the most appropriate models using a statistical approach to forecast weekly TC activity up to 4 weeks in advance. Predictors used include indices of various natural climate variability modes, namely the Madden–Julian Oscillation (MJO), the El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Interdecadal Pacific Oscillation (IPO). These modes often have robust physical and statistical relationships with TC occurrences in the SI region and the broader southwest Pacific territory as shown by preceding studies. Additionally, we incorporate TC seasonality as a potential predictor given the persistence of TCs occurring more in certain months than others. Note that a model with seasonality predictor alone (hereafter called the “climatology” model) forms a baseline for comparisons. The hindcast verifications of the forecasts using leave-one-out cross-validation procedure over the study period 1975–2019 indicate considerable improvements in prediction skill of our logistic regression models over climatology, even up to 4 weeks in advance. This study sets the foundation for introducing subseasonal prediction services, which is a national priority for improved decision making in sectors like agriculture and food security, water, health and disaster risk mitigation in the Solomon Islands. © 2023 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society

    State of the climate in 2010

    No full text
    Several large-scale climate patterns influenced climate conditions and weather patterns across the globe during 2010. The transition from a warm El Nino phase at the beginning of the year to a cool La Nina phase by July contributed to many notable events, ranging from record wetness across much of Australia to historically low Eastern Pacific basin and near-record high North Atlantic basin hurricane activity. The remaining five main hurricane basins experienced below-to well-below-normal tropical cyclone activity. The negative phase of the Arctic Oscillation was a major driver of Northern Hemisphere temperature patterns during 2009/10 winter and again in late 2010. It contributed to record snowfall and unusually low temperatures over much of northern Eurasia and parts of the United States, while bringing above-normal temperatures to the high northern latitudes. The February Arctic Oscillation Index value was the most negative since records began in 1950. The 2010 average global land and ocean surface temperature was among the two warmest years on record. The Arctic continued to warm at about twice the rate of lower latitudes. The eastern and tropical Pacific Ocean cooled about 1 C from 2009 to 2010, reflecting the transition from the 2009/10 El Nino to the 2010/11 La Nina. Ocean heat fluxes contributed to warm sea surface temperature anomalies in the North Atlantic and the tropical Indian and western Pacific Oceans. Global integrals of upper ocean heat content for the past several years have reached values consistently higher than for all prior times in the record, demonstrating the dominant role of the ocean in the Earth's energy budget. Deep and abyssal waters of Antarctic origin have also trended warmer on average since the early 1990s. Lower tropospheric temperatures typically lag ENSO surface fluctuations by two to four months, thus the 2010 temperature was dominated by the warm phase El Nino conditions that occurred during the latter half of 2009 and early 2010 and was second warmest on record. The stratosphere continued to be anomalously cool. Annual global precipitation over land areas was about five percent above normal. Precipitation over the ocean was drier than normal after a wet year in 2009. Overall, saltier (higher evaporation) regions of the ocean surface continue to be anomalously salty, and fresher (higher precipitation) regions continue to be anomalously fresh. This salinity pattern, which has held since at least 2004, suggests an increase in the hydrological cycle. Sea ice conditions in the Arctic were significantly different than those in the Antarctic during the year. The annual minimum ice extent in the Arctic reached in September was the third lowest on record since 1979. In the Antarctic, zonally averaged sea ice extent reached an all-time record maximum from mid-June through late August and again from mid-November through early December. Corresponding record positive Southern Hemisphere Annular Mode Indices influenced the Antarctic sea ice extents. Greenland glaciers lost more mass than any other year in the decade-long record. The Greenland Ice Sheet lost a record amount of mass, as the melt rate was the highest since at least 1958, and the area and duration of the melting was greater than any year since at least 1978. High summer air temperatures and a longer melt season also caused a continued increase in the rate of ice mass loss from small glaciers and ice caps in the Canadian Arctic. Coastal sites in Alaska show continuous permafrost warming and sites in Alaska, Canada, and Russia indicate more significant warming in relatively cold permafrost than in warm permafrost in the same geographical area. With regional differences, permafrost temperatures are now up to 2 C warmer than they were 20 to 30 years ago. Preliminary data indicate there is a high probability that 2010 will be the 20th consecutive year that alpine glaciers have lost mass. Atmospheric greenhouse gas concentrations continued to rise and ozone depleting substances continued to decrease. Carbon dioxide increased by 2.60 ppm in 2010, a rate above both the 2009 and the 1980-2010 average rates. The global ocean carbon dioxide uptake for the 2009 transition period from La Nina to El Nino conditions, the most recent period for which analyzed data are available, is estimated to be similar to the long-term average. The 2010 Antarctic ozone hole was among the lowest 20% compared with other years since 1990, a result of warmer-than-average temperatures in the Antarctic stratosphere during austral winter between mid-July and early September
    corecore