346 research outputs found

    Impact of surface phenomena on direct bulk flexoelectric effect in finite samples

    Full text link
    In the framework of a continuum theory, it is shown that the direct flexoelectric response of a finite sample essentially depends on the surface polarization energy, even in the thermodynamic limit where the body size tends to infinity. It is found that a modification of the surface energy can lead to a change of the polarization response by a factor of two. The origin of the effect is an electric field produced by surface dipoles induced by the strain gradient. The unexpected sensitivity of the polarization response to the surface energy in the thermodynamic limit is conditioned by the fact that the moments of the surface dipoles may scale as the body size

    Flexoelectric effect in finite samples

    Full text link
    Static flexoelectric effect in a finite sample of a solid is addressed in terms of phenomenological theory for the case of a thin plate subjected to bending. It has been shown that despite an explicit asymmetry inherent to the bulk constitutive electromechanical equations which take into account the flexoelectric coupling, the electromechanical response for a finite sample is "symmetric". "Symmetric" means that if a sensor and an actuator are made of a flexoelectric element, performance of such devices can be characterized by the same effective piezoelectric coefficient. This behavior is consistent with the thermodynamic arguments offered earlier, being in conflict with the current point of view on the matter in literature. This result was obtained using standard mechanical boundary conditions valid for the case where the polarization vanishes at the surface. It was shown that, for the case where there is the polarization is nonzero at the surface, the aforementioned symmetry of electromechanical response may be violated if standard mechanical boundary conditions are used, leading to a conflict with the thermodynamic arguments. It was argued that this conflict may be resolved when using modified mechanical boundary conditions. It was also shown that the contribution of surface piezoelectricity to the flexoelectric response of a finite sample is expected to be comparable to that of the static bulk contribution (including the material with high values of the dielectric constant) and to scale as the bulk value of the dielectric constant (similar to the bulk contribution). This finding implies that if the experimentally measured flexoelectric coefficient scales as the dielectric constant of the material, this does not imply that the measured flexoelectric response is controlled by the static bulk contribution to the flexoelectric effect

    Quantum limited measurements with lossy optical cavity enabled by dissipative optomechanical coupling

    Full text link
    We analyze a cavity optomechanical setup, in which position of an oscillator modulates optical loss. We show that in such setup quantum limited position measurements can be performed if the external cavity coupling rate matches the optical loss rate, a condition known as "critical coupling". Additionally, under this condition the setup exhibits a number of potential benefits for practical operation including the complete absence of dynamical backaction, and hence optomechanical instability, and rejection of classical laser noise and thermal fluctuations of cavity frequency from the measurement record. We propose two implementations of this scheme: one based on signal-recycled Michelson-type interferometer and the other on a tilted membrane inside Fabry-Perot cavity

    Dissipative vs dispersive coupling in quantum opto-mechanics: squeezing ability and stability

    Full text link
    Generation of squeezed light and optomechanical instability for dissipative type of opto- mechanical coupling is theoretically addressed for a cavity with the input mirror, serving as a mechanical oscillator, or an equivalent system. The problem is treated analytically for the case of resonance excitation or small detunings, mainly focusing on the bad cavity limit. A qualitative difference between the dissipative and purely dispersive coupling is reported. In particular, it is shown that, for the purely dissipative coupling in the bad cavity regime, the backaction is strongly reduced and the squeezing ability of the system is strongly suppressed, in contrast to the case of purely dispersive coupling. It is also shown that, for small detunings, stability diagrams for the cases of the purely dispersive and dissipative couplings are qualitatively identical to within the change of the sign of detuning. The results obtained are compared with those from the recent theoretical publications

    Phononically shielded photonic-crystal mirror membranes for cavity quantum optomechanics

    Full text link
    We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor and discuss its applicability for cavity optomechanics. The 88.5 nm88.5~\text{nm} thin stoichiometric silicon-nitride membrane, designed and fabricated to combine 2D-photonic and phononic crystal patterns, reaches reflectivities up to 99.89 %99.89~\% and a mechanical quality factor of 2.9×1072.9 \times 10^7 at room temperature. We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror. The optical beam shape in cavity transmission shows a stark deviation from a simple Gaussian mode-shape, consistent with theoretical predictions. We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature. At higher intracavity powers we observe an optomechanically induced optical bistability. The demonstrated device has potential to reach high cooperativities at low light levels desirable for e.g. optomechanical sensing and squeezing applications or fundamental studies in cavity quantum optomechanics, and meets the requirements for cooling to the quantum ground state of mechanical motion from room temperature

    Correlation Between Structure And C-Afm Contrast Of 180-Degree Domain Walls In Rhombohedral Bati03

    Get PDF
    Using Landau-Ginzburg-Devonshire theory we describe 180-degree domain wall structure, intrinsic energy and carrier accumulation in rhombohedral phase of BaTiO3 as a function of the wall orientation and flexoelectric coupling strength. Two types of domain wall structures (phases of the wall) exist depending on the wall orientation. The low-energy 'achiral' phase occurs in the vicinity of the {110} wall orientation and has odd polarization profile invariant with respect to inversion about the wall center. The second 'chiral' phase occurs around {211} wall orientations and corresponds to mixed parity domain walls that may be of left-handed or right-handed chirality. The transformation between the phases is abrupt, accompanied with 20-30% change of the domain wall thickness and can happen at fixed wall orientation with temperature change. We suggest that the phase transition may be detected through domain wall thickness change or by c-AFM. The structure of the domain wall is correlated to its conductivity through polarization component normal to the domain wall, which causes free carriers accumulation. Depending on the temperature and flexoelectric coupling strength relative conductivity of the wall becomes at least one order of magnitude higher than in the single-domain region, creating c-AFM contrast enhancement pronounced and detectable.Comment: 31 pages, 10 figures, Supplementary material

    "Head-to-head" and "tail-to-tail" 180-degree domain walls in an isolated ferroelectric

    Full text link
    "Head-to-head" and "tail-to-tail" 180-degree domain-walls in a finite isolated ferroelectric sample are theoretically studied using Landau theory. The full set of equations, suitable for numerical calculations is developed. The explicit expressions for the polarization profile across the walls are derived for several limiting cases and wall-widths are estimated. It is shown analytically that different regimes of screening and different dependences for width of charged domain walls on the temperature and parameters of the system are possible, depending on spontaneous polarization and concentration of carriers in the material. It is shown that the half-width of charged domain walls in typical perovskites is about the nonlinear Thomas-Fermi screening-length and about one order of magnitude larger than the half-width of neutral domain-walls. The formation energies of "head-to-head" walls under different regimes of screening are obtained, neglecting the poling ability of the surface. It is shown that either "head-to-head" or "tail-to-tail" configuration can be energetically favorable in comparison with the monodomain state of the ferroelectric if the poling ability of the surface is large enough. If this is not the case, the existence of charged domain walls in bulk ferroelectrics is merely a result of the domain-growth kinetics. Size-effect corresponding to the competition between state with charged domain wall, single domain state, multidomain state, and the state with the zero polarization is considered. The results obtained for the case of an isolated ferroelectric sample were compared with the results for an electroded sample. It was shown that charged domain wall in electroded sample can be either metastable or stable, depends on the work function difference between electrodes and ferroelectric and the poling ability of the electrode/ferroelectric interface.Comment: 47 pages, 10 figure

    Domain wall conduction in multiaxial ferroelectrics

    Full text link
    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multi-axial ferroelectric-semiconductors is analyzed. The effects of the domain size, wall tilt and curvature, on charge accumulation, are analyzed using the Landau-Ginsburg Devonshire (LGD) theory for polarization combined with Poisson equation for charge distributions. Both the classical ferroelectric parameters including expansion coefficients in 2-4-6 Landau potential and gradient terms, as well as flexoelectric coupling, inhomogeneous elastic strains and electrostriction are included in the present analysis. Spatial distributions of the ionized donors, free electrons and holes were found self-consistently using the effective mass approximation for the respective densities of states. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and thicker cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radius less then 5-10 correlation length appeared conducting across entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.Comment: 39 pages, 11 figures, 3 tables, 4 appendice

    Dielectric properties characterization of La- and Dy-doped BiFeO3 thin films

    Get PDF
    The dielectric response of La- and Dy- doped BiFeO3 thin films at microwave frequencies (up to 12 GHz) has been monitored as a function of frequency, direct current (dc) electric field, and magnetic field in a temperature range from 25 to 300 °C. Both the real and imaginary parts of the response have been found to be non-monotonic (oscillating) functions of measuring frequency. These oscillations are not particularly sensitive to a dc electric field; however, they are substantially dampened by a magnetic field. The same effect has been observed when the volume of the characterized sample is increased. This phenomenon is attributed to the presence of a limited number of structural features with a resonance type response. The exact origin of these features is unknown at present. Leakage current investigations were performed on the whole set of films. The films were highly resistive with low leakage current, thereby giving us confidence in the microwave measurements. These typically revealed ‘N'-type I-V characteristic

    A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3

    Full text link
    We have investigated the interaction of oxygen vacancies and 180-degree domain walls in tetragonal PbTiO3 using density-functional theory. Our calculations indicate that the vacancies do have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti-O-Ti bonds, and attempts to model the results with simple continuum models are discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm
    • …
    corecore