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The structure and electronic phenomena at the 180-degree domain wall in the rhombohedral phase of BaTiO3 are
described using Landau-Ginzburg-Devonshire theory. Dependent on the wall orientation, two types of domain
wall behaviors are identified. The low-energy “achiral” phase occurs in the vicinity of the {110} orientation
and has odd polarization profile invariant with respect to inversion about the wall center. The “chiral” phase
occurs around {211} wall orientations and corresponds to mixed parity domain walls. The temperature-induced
transformation between the phases is abrupt and is accompanied with 20%–30% change of the domain wall
thickness. This process gives rise to the significant changes of the electronic structure of the wall. Depending on
the temperature and flexoelectric coupling strength, relative conductivity of the wall becomes at least one order of
magnitude higher than in the single-domain region. The possible strategies for exploring these transitions based
on direct measurements of domain wall width and conductive atomic force microscopy are discussed.
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I. INTRODUCTION

Structure and properties of ferroelectric domain walls
(DWs) have been remaining the objects of endless fascination
by the condensed matter physics community since the early
days of ferroelectricity. In particular, the structure of DWs has
been explored both experimentally1,2 and theoretically3–6 for
several decades, with recent impetus derived from advances
in electron microscopy and scanning probe microscopy tech-
niques that allowed atomic-level probing of order parameter
fields and electronic wall functionality.7–10 This in turn
has stimulated extensive effort in theoretical understanding
of structure and order parameter couplings at the domain
walls. To date, most theoretical studies have been performed
using the continuum Landau-Ginzburg-Devonshire (LGD)
theory.3–6,11–14 Despite the fact that intrinsic width of DWs
in ferroelectrics is of the order of several lattice constants,
domain wall structure calculated using LGD has been found
in good agreement with that derived from density functional
theory (DFT).15–17 These studies have further elucidated a
broad spectrum of novel phenomena at the walls, including
emergence of secondary order parameters, magnetic and
structural order phase transitions,18–20 and multiple electronic
phenomena.

One of the interesting features of ferroelectric DW fore-
casted theoretically, but not yet observed experimentally, is
the transition between one-component and two-component
polarization profiles, i.e., intrinsic symmetry-breaking tran-
sition in the wall planes. For a general Ising model, such
transition was predicted long ago by Lajzerowicz and Niez21

in 1979. LGD theory of the phenomenon in a real ferroelectric
material was developed only recently by Hlinka et al. for
the rhombohedral phase of BaTiO3 (BTO).6,14,17 For this
system, Bloch walls with a large rotating component have been
predicted.6 While for the {211} orientations, the wall structure
has been shown to undergo the symmetry breaking transition14

to chiral phase. However, the scope of the studies6,14,17 have

been restricted to several special wall orientations, so that
the questions about energetically preferable orientations and
guidelines for the experimental observation of the phase
transition in the walls still remain open. Furthermore, unex-
plored was the impact of the flexoelectricity, i.e., the bilinear
coupling of polarization with a strain gradient,22,23 while the
flexoelectricity-related electromechanical effects are known
to be important for the physics of nanosized ferroelectric with
polarization gradient.24–29

Note that the concept of Bloch and Neel-type domain
walls was introduced by Lee et al.30 These considerations
motivate us to perform LGD-based study of 180-degree DW
structure in the rhombohedral phase of BTO, exploring the
angular anisotropy of DW energy and specifically addressing
the role of flexoelectric coupling. These studies predict the
existence of phase transitions between chiral and achiral
wall structures induced by temperature or wall rotation, and
suggest the presence of additional one-dimensional (1D)
topological defects within the walls. We further explore the
electronic phenomena at these walls related to the presence
of the polarization component perpendicular to the wall
plane. Resultant free charges accumulation is predicted to be
sufficiently large to be detected by conductive AFM (c-AFM),
suggesting possible experimental strategy for exploring this
behavior.

The structure of the article is as follows. In Sec. II we
describe the properties of the 180-degree domain walls within
GLD phenomenology. The effect of the flexoelectric coupling
on the wall structure is considered in Sec. III. Finally, the
electronic phenomena and conductivity changes at the domain
walls are discussed in Sec. IV.

II. STRUCTURE OF THE 180-DEGREE DOMAIN WALL

Here we analyze the structure of the 180-degree domain
wall within the framework of simple LGD theory neglecting
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flexoelectric coupling and semiconducting properties of BTO
(dielectric limit). The validity of the dielectric approximations
is analyzed in this section, illustrating that the conductivity has
negligible influence on DW structure and intrinsic energy.

A. Statement of the problem

We consider nominally uncharged 180-degree DW in the
bulk of BTO single crystal. According to recent LGD and
DFT studies Ising-Bloch type14,17 and mixed Ising-Bloch-
Néel type30,31 180-degree walls can exist in a wide class of
ferroelectric materials, including BTO. Thus, a polarization
vector inside a DW in BTO can have all three components. The
component P3, parallel to the spontaneous polarization ±PS in
the domains, is regarded as the Ising type; the component P2,
parallel to the wall plane, but perpendicular to the Ising-type
component, which vanishes far from the wall, is regarded as
the Bloch-type component; and component P1, normal to the
wall, is regarded as the Néel-type component [see Fig. 1(a)].
Note that the Néel-type component P1 is associated with the
nonzero divergence of the polarization vector and hence should
be considered jointly with associated depolarization fields.

We analyze the polarization profile in the DW region within
LGD theory. We introduce Gibbs potential G with dG =
EidPi − uijdσij , where Ei is the electric field (including the
depolarization field), uij are elastic strains, σij are elastic
stresses, and Pi are polarization components related to the soft
mode. For the m3̄m symmetry in the crystallographic frame
the expression for the Gibbs potential has the form (see, e.g.,
Refs. 32–34)

G = Gpolar + Ggrad + Gstriction + Gelastic, (1)
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FIG. 1. (Color online) (a) Polarization vector structure. (b)
Rotated coordinate frame {x̃1,x̃2,x̃3} choice for 180-degree nominally
uncharged domain walls in the rhombohedral ferroelectric BTO; α

is the wall rotation angle counted from crystallographic plane 〈101〉.
The distance from the wall plane is x̃1. (c) and (d) Schematics of the
polarization components distribution inside achiral and chiral domain
walls.

where Gpolar = aiP
2
i + aijP

2
i P 2

j + aijkP
2
i P 2

j P 2
k is the Landau

part, Ggrad = gijkl

2
∂Pi

∂xj

∂Pk

∂xl
is the gradient or Ginsburg part,

Gstriction = −QijklσijPkPl is the electrostriction term, and

Gelastic = − sijkl

2 σijσkl is the elastic contribution. Hereinafter
ai , aij , and aijk are the LGD-expansion coefficients of the
second, fourth, and sixth order dielectric stiffness tensors
correspondingly, gradient coefficients are gijkl , Qijkl are
fourth second rank electrostriction tensors coefficients, and
sijkl are elastic compliances. Numerical values of the tensor
components are collected from Refs. 6 and 34–37 and listed
in Table S1 of the Supplemental Material.38

Since all physical quantities can depend only on the
distance x̃1 from the DW plane x̃1 = 0, we introduce the
coordinate system {x̃1,x̃2,x̃3} rotated with respect to the cubic
crystallographic axes {x1,x2,x3} as shown in Fig. 1(b). Here α

is the wall rotation angle around the cube spatial diagonal with
respect to the 〈101〉 plane. Equation (1) can then be rewritten in
the coordinate system {x̃1,x̃2,x̃3} to obtain G̃ and to derive the
Euler-Lagrange equations39 for polarization components P̃i

and equations of state for elastic stresses σ̃ij correspondingly:

∂G̃

∂P̃i

− ∂(∂G̃)

∂(∂P̃i/∂x̃1)
= Ẽi, (2a)

∂G̃

∂σ̃ij

= −ũij . (2b)

The external field is regarded absent, so Ẽ2 = Ẽ3 = 0. The
depolarization field Ẽd

1 , caused by the inhomogeneity of
P̃1(x̃1), can be derived from the Maxwell equation divD = 0,
where D is the electric displacement as12

Ẽd
1 (x̃1) ≈ −P̃1(x̃1)

ε0εb

. (3)

Here ε0 = 8.85 × 10−12 F/m is the universal dielectric
constant and εb is the background dielectric permittivity
unrelated with the soft mode.40 The boundary conditions
are P̃3(x̃1 → ±∞) = ±P̃S , P̃1,2(x̃1 → ±∞) → 0, Ẽ1(x̃1 →
±∞) → 0, and σ̃ij (x̃1 → ±∞) = 0.

Mechanical variables can be eliminated by solving
equations of state along with the mechanical equilib-
rium conditions ∂σ̃1j /∂x̃1 = 0 and compatibility relation
ei1lej1n(∂2ũln/∂x̃2

1 ) = 0. Explicit form of these equations and
elastic stresses in the rotated coordinate frame are listed in
Appendixes S1 and S2.38 Below we present the results of
numerical calculations based on Eqs. (2) and (3).

B. DW structure

The analysis of the polarization profiles yields two classes
of solutions, corresponding to chiral and achiral wall struc-
tures. The wall is achiral if its profile is invariant upon the
inversion with respect to the wall center. In the achiral wall
all the components are odd functions of the x̃1 coordinate
[Fig. 1(c)]. In the chiral wall type the components P̃1(x̃1)
and P̃2(x̃1) are of mixed x̃1 parity, i.e., contain odd and even
components [Fig. 1(d)]. As follows from the symmetry of the
problem (the governing equations and boundary conditions are
invariant upon the inversion with respect to the wall center), the
chiral walls are bistable, corresponding to additional symmetry
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FIG. 2. (Color online) Profiles of polarization components (a)
P̃2(x̃1) and (b) P̃1(x̃1) calculated across the DW for rotation angles
α = 0,π/12,π/6 (specified near the curves), temperature 180 K, and
BTO parameters listed in Table S1.38 Angular dependence of maximal
(red upper curves labeled P̃ max

i ) and minimal (blue bottom curves
labeled P̃ min

i ) values of (c) P̃2(x̃1) and (d) P̃1(x̃1). Absolutely stable
solutions are shown by the solid and dash-dotted curves for left- and
right-handed solutions correspondingly. Achiral solutions are shown
by dotted curves. Filled rectangles indicate the region of absolute
stability of chiral walls. Empty regions correspond to achiral wall
absolute stability regions.

breaking in the wall plane. In both wall types all three
components of polarization are present. Note that in contrast
to the tetragonal symmetry,41 in the rhombohedral phase the
component P̃1(x̃1) is nonzero even under the absence of the
flexoelectric coupling.

Distributions of polarization components P̃1(x̃1) and P̃2(x̃1)
across the 180-degree wall are shown in Figs. 2(a) and 2(b)
for α = 0,π/12,π/6 correspondingly. The Ising component
P̃3(x̃1) (not shown) has a standard kink profile, which is
weakly α dependent. Interestingly, P̃1(x̃1) is about two order
of magnitude smaller than P̃2(x̃1) as it is suppressed by the
depolarizing field Ẽ1(x̃1). The screening phenomena at the
wall and associated changes in the conductivity are analyzed
in Sec. IV.

The numerical analysis of Eqs. (2) and (3) suggests
that the structure of the wall is strongly dependent on the
orientation. This behavior is illustrated in Figs. 2(c) and 2(d)
by plotting maximal and minimal values of the components
P̃ max

i and P̃ min
i as functions of the domain wall rotation

angle α. The achiral solution [dotted line in Figs. 2(c) and
2(d)] exists for any DW orientation. However, for the wall
orientations around α = π/6 + mπ/3 (m = 0,1,2, . . .) this
solution becomes metastable, and the chiral solution becomes
energetically preferable (see Fig. 3 from Sec. II C). The
true solutions, corresponding to minimal intrinsic energy,
are shown by the solid and dash-dotted curves for left- and
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FIG. 3. (Color online) (a) Angular dependence and (b) polar
plot of the 180-degree DW energy density calculated for BTO at
180 K. Solid curves correspond to the true solution. The energy
of achiral solution is shown by dotted curves. Filled and empty
rectangles indicate the regions of absolute stability of chiral and
achiral solutions, respectively.

right-handed solutions, respectively, in Figs. 2(c) and 2(d).
Thus if we virtually rotate the DW, it undergoes a phase
transition from achiral to chiral state at α ≈ (2m + 1)π/12,
m = 0,1,2.

C. DW energy

To calculate the free energy of the DW we perform
the Legendre transformation of the potential (1)42 as F =∫ ∞
−∞ (G̃ + ũij σ̃ij − P̃1Ẽ

d
1 /2)dx̃1. Dependencies of the DW

energy on the wall orientation are shown in Fig. 3. The
obtained energy anisotropy [see polar plot Fig. 3(b)] explains
the anisotropic hexagonlike domains observed experimentally
in BTO.43 One can see from Fig. 3(a) that energetically
preferable orientations α = mπ/3, m = 0,1,2 correspond to
achiral walls. In contrast, chiral walls are realized in the
vicinity of the energy maximums α = π/6 + mπ/3.

D. Phase transition in the wall

The two possible wall structures suggest the existence
of symmetry breaking transitions and associated topological
defects within the walls (similar to cross-tie defects in
ferromagnets). Note that chiral phase transitions inside DW
were predicted by Lajzerowicz and Niez.21 Using the three-
dimensional Ising model they studied a domain wall state as
a function of anisotropy (K) and temperature (T ) and have
shown that the wall undergoes a phase transition in the K , T

plane, with the chirality as the order parameter. Hlinka et al.14

suggested to apply mechanical stress to switch {211} DW
between chiral and achiral phases in the rhombohedral BTO.
Here we observe both chiral and achiral phases at zero stress,
and proceed to explore the temperature- and orientation-driven
phase transition possible between the two phases. Note that
while thermal transitions are trivial, the orientation-driven
transition can be visualized, virtually rotating the domain
wall from the achiral {110} “ground state” to the chiral state.
Experimentally this can be explored by rotational anisotropy
of properties along the wall of a cylindrical domain wall where
the phase transition occurs in certain spatial points.

To explore this behavior systematically and analyze angular
and temperature dependence of chirality, we introduce relevant
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FIG. 4. (Color online) (a) Chirality C (solid curve) and bichirality
biC (dashed curve) vs wall rotation angle α calculated for BTO
at 180 K. Only the left-handed wall is shown. (b) Temperature
dependence of the maximal values of (c) P̃2 and (d) P̃1 calculated
for different rotation angles α = π/3 (minimal energy); α = π/2
(maximal energy), and α = 0.4π,0.41π (phase transition) specified
near the curves. Gray rectangles in plots (b)–(d) indicate the region
of orthorhombic and rhombohedral phases coexistence.63

order parameters. As a measure of chirality we utilize the
parameter

C =
∫ ∞

−∞

(
P̃3

dP̃2

dx̃1
− P̃2

dP̃3

dx̃1

)
dx̃1

introduced by Salje et al.44 In a similar manner we introduce
the chiral dipole moment or “bichirality”

biC =
∫ ∞

−∞

(
P̃3

dP̃2

dx̃1
− P̃2

dP̃3

dx̃1

)
x̃1dx̃1.

The C and biC parameters characterize even and odd
polarization component P̃2, respectively.

The orientation-driven phase transition from achiral to
chiral state is illustrated in Fig. 4. The transition happens at
angles αm

cr ≈ π/6 ± π/12 + mπ/3 for T ≈ 170–200 K. The
critical angles exhibit some weak temperature dependence,
as shown in Fig. 4(b), for the α∗

cr ≈ 5π/12. Thus there is
a narrow region of wall orientations 0.4π − 0.415π , where
phase transition may be achieved by temperature change
at constant wall orientation, as illustrated in Fig. 4(b). The
behavior of polarization components P̃2 and P̃1 near such
temperature-driven phase transition is illustrated in Figs. 4(c)
and 4(d), where a noticeable jump of their maximal values is
observed. The jump of the component P̃2 [Fig. 4(c)] is not
small (about two times), and we dare to propose the way of
its experimental observation through its correlation with the
relatively small jump on the component P̃1 [Fig. 4(d)], which
can be detected from c-AFM at different temperatures, as it will
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FIG. 5. (Color online) Temperature dependence of DW width
calculated in rhombohedral phase of BTO for different rotation angles
α = π/2,π/3,0.4π,0.41π,0.42π specified near the curves. Gray
rectangles indicate the region of orthorhombic and rhombohedral
phases coexistence.

be discussed in Sec. IV. The big jump on the component P̃2 can
lead to the nontrivial behavior of the DW width in the vicinity
of the phase space point {α∗

cr,T
∗

cr}, where the achiral wall
becomes more stable than the chiral one. Figure 5 demonstrates
such temperature behavior of the DW width calculated for the
Ising polarization component P̃3 at the level 0.5 with respect
to the saturation value. Since the jump on DW width is of
the order of 20% (see solid and dashed curves in Fig. 5), the
predicted temperature-induced phase transition from chiral to
achiral wall can potentially be verified experimentally from
the domain wall width temperature measurements by using
high-resolution electron microscopy.

III. IMPACT OF THE FLEXOELECTRIC COUPLING

We further explore the role of flexoelectric coupling on
the wall structure. To take into account the flexoelectric
contribution we add the term (see, e.g., Refs. 23,25,29,32,
and 45)

Gf = F̃ijkl

2

(
σ̃ij

∂P̃k

∂x̃l

− P̃k

∂σ̃ij

∂x̃l

)
(4)

into the Gibbs potential (1), where F̃ijkl is the flexoelectric
tensor. This leads to the inhomogeneity in Euler-Lagrange
equations: −F̃12(∂σ̃2/∂x̃1) − F̃13(∂σ̃3/∂x̃1) − 2F̃14(∂σ̃4/∂x̃1)
in equation for P̃1, 2F̃15∂σ̃4/∂x̃1 in equation for P̃2, and
F̃15∂σ̃2/∂x̃1 in equation for P̃3 (see Appendix S338).

The numerical analysis of resultant GLD energy suggests
that the flexoelectric coupling introduces additional angular
anisotropy for the DW structure and energy. As shown in
Fig. 6(a), the modulation period of polarization component P̃1

changes from π/3 without flexoelectric coupling to 2π/3 for
nonzero flexoelectric coupling, resulting in additional symme-
try breaking between the states. Remarkably, the ground states
at α = mπ/3 stay equivalent, while the energy maxima at
α = π/6 + mπ/3 for odd and even m become nonequivalent
[Fig. 6(b)]. This is seen from the different width of the area
of chiral wall absolute stability and different height of the
energy maximum. Note that the equivalence of the minima
follows from the symmetry of the problem, which contains
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DW region calculated for BTO, temperature 180 K, flexoelectric
coefficients F11 = 2.46, F12 = 0.48, F44 = 0.05 in 10−11 m3/C were
taken from ab initio calculations;37,64 all designations are the same as
in the Fig. 2(d). (b) Angular dependence of the DW energy density;
all designations are the same as in the Fig. 3(a).

the axis of the third order along [111] and the mirror plane
{110}. For the maxima the situation is different since there is
no mirror plane at {211} and the only symmetry operation is
the axis of the third order. Hence, the flexoelectric effect lifts
the degeneracy of the maxima and reveals the true symmetry
of the problem, which was not reflected in the approximation
without the coupling (see Appendix S438). Note that the
flexoelectric contribution in the DW energy is comparable
with energy anisotropy originated from electrostriction.

Polarization component P̃1 appeared much more sensitive
to the flexoelectric coupling than P̃2 (see Table I). At the same
time, the component P̃3 appears almost insensitive to the cou-
pling value. Due to the coupling, P̃1 amplitude is nonzero for all
rotation angles including α = mπ/3, while it is still minimal
for this angle [compare Figs. 2(d) and 6(a)]. Thus flexoelectric
coupling acts as an additional and relatively strong source for
the polarization perpendicular to the wall plane.

To summarize, the component P̃1 is very sensitive to wall
orientation angle α with respect to the crystallographic plane.
Also P̃1 is typically an order of magnitude smaller than P̃2,
because it is suppressed by a depolarization field. Maximal
values of the components P̃2 and P3 are typically of the same
order since both are not affected by the depolarization field;
but P̃2 is a bit smaller than P3 and rather sensitive to the
angle α. Naturally, maximal value of P3 coincides with BaTiO3

spontaneous polarization value.

(a) achiral   DW 

EF
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nmax nmax

nmin

FIG. 7. (Color online) Sketches of local band bending for (a)
achiral and (b) chiral walls, where the spatial regions with maximal
(nmax) and minimal (nmin) electron density are indicated.

IV. ELECTRONIC PHENOMENA AT THE
180-DEGREE DOMAIN WALLS

The presence of Néel component P̃1 leads to either accu-
mulation or depletion of free carriers near the wall, potentially
affecting the wall conductivity. Note that the DW conductivity
mechanism stemming from the screening of the potential
jump caused by depolarization field4,46–48 has been justified by
recent c-AFM studies of charged DWs in LiNbO3,49 nominally
uncharged DWs in BiFeO3,8,50–53 and Pb(Zr,Ti)O3.54,55 DWs,
vortex structures, and nanodomains in the ferroelectrics exhibit
strongly enhanced c-AFM contrast in comparison with single-
domain regions. In parallel, LGD theory was successfully used
to evolve an analytical treatment of the carrier accumulation
by both incline (and thus charged) and nominally uncharged
domain walls in uniaxial ferroelectric LiNbO3,56 multiaxial
ferroelectrics-ferroelastics Pb(Zr,Ti)O3,32 BiFeO3,57 and in-
cipient ferroelectric-ferroelastic CaTiO3.58 Here we explore
the electronic phenomena induced by the Néel component,
and establish the potential for exploring symmetry breaking
transitions at the walls by c-AFM.

A. Statement of the problem for the domain wall conductance

The conductivity enhancement in the domain wall is caused
by the potential variation inside the wall. Here we assume that
the concentration of holes is negligible and the conductivity
is purely of n type.43 The potential well/hump leads to
higher/lower electron concentration in the DW due to the
local band bending (see sketches in Fig. 7 for chiral and achiral
walls).

TABLE I. Maximal value of polarization components calculated with and without flexoelectric coupling.

Maximal value Temperature

of polarization 140 K, α = π/3 180 K, α = π/3 140 K, α = π/2 180 K, α = π/2

component Fij = 0 Fij �= 0 Fij = 0 Fij �= 0 Fij = 0 Fij �= 0 Fij = 0 Fij �= 0

P̃ max
1 (μC/cm2) 0 0.054 0 0.047 0.109 0.112 0.093 0.096

P̃ max
2 (μC/cm2) 11.3 11.3 10.9 10.9 23.9 24.6 22.5 23.2

P̃ max
3 (μC/cm2) 37.5 37.5 36.2 36.2 37.5 37.5 36.2 36.2

054111-5



EUGENE A. ELISEEV et al. PHYSICAL REVIEW B 87, 054111 (2013)

In the general case, analysis of electronic phenomena at the
walls requires self-consistent solution of the GLD problem
coupled to appropriate carrier statistics and Poisson-type
equation describing potential redistribution due to the presence
of electrons. Here we show numerically that for realistic charge
carriers concentration in BTO the screening of the bound
charge by electrons is negligible, and hence their distribution
can be found with sufficient accuracy in the dielectric limit. In
this approximation the potential ϕ is found from the expression

ϕ(x̃1) ≈ 1

ε0εb

∫ x̃1

−∞
dx̃P1(x̃). (5)

The electron density n(x̃1) distribution is estimated as59

n(x̃1) =
∫ ∞

0
dε gn(ε)f [ε + EC − EF − eϕ(x̃1)]

≈ nc exp

[
EF − EC + eϕ(x̃1)

kBT

]
, (6)

where gn(ε) = √
2m3

nε/(π2h̄3) is the energy density of states
in the effective mass approximation, mn is the effective mass;
f (x) = [1 + exp(x/kBT )]−1 is the Fermi-Dirac distribution
function, kB = 1.3807 × 10−23 J/K, T is the absolute tem-
perature, EF is Fermi level position, EC is the bottom of
the conductive band, and e = 1.6 × 10−19 C is the electron
charge. Approximate equality in Eq. (6) corresponds to the
Boltzmann approximation for which the density of states in the

conduction band nc =
√

πm3
nk

3
BT 3/(

√
2π2h̄3). We checked

that the Boltzmann approximation works adequately until
e|ϕ| � 5kBT . Fermi level position EF (T ) in the frame of our
approximation may be found in terms of electron concentration
in the single-domain region n0(T ) = nc exp[(EF − EC)/kBT ]
as EF (T ) = EC + kBT ln(n0/nc).

Note that here we do not take into account deformation
potential,60,61 because we consider the model case of the
nondegenerated simple band structure and use the effective
mass approximation. For the case a shallow donor level and the
conductive band edge are shifted as a whole with the strain.62

We further postulate the continuity of the band structure across
the DW. Rigorously speaking the potential barrier or well ϕ(x̃1)
should be included into the quantum-mechanical treatment
since quantization should exist in the direction transverse to
the wall, which has thickness ∼1 nm. Here we are interested in
conductivity along the DW where no quantization occurs. We
calculate the potential jump ϕ(x̃1) within continuum media
theory and stipulate that results obtained for the carrier’s
accumulation/depletion across the DW are qualitatively valid
and will be justified by a rigorous quantum-mechanical
approach elsewhere. Results of the numerical modeling for the
DW polarization vector structure, electric potential, and charge
carriers redistribution across the domain wall are discussed
below.

B. Phase transition detection in DW by c-AFM contrast

Since the P̃1 profile is antisymmetric for achiral DW, the
corresponding potential barrier ϕ(x̃1) is symmetric, while it
can be asymmetric for achiral DWs. Symmetric barriers ϕ(x̃1)
accumulate electrons with maximal density nmax [Fig. 7(a)].
Asymmetric double barriers can attract the electrons in some
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FIG. 8. (Color online) Relative maximal nmax/n0 and minimal
nmin/n0 electron density vs the DW rotation angle α calculated
in BTO at 180 K without flexoelectric coupling Fij = 0 (a) and
with flexoelectric coupling F11 = 2.46, F12 = 0.48, F44 = 0.05 in
10−11 m3/C (b).

spatial regions with maximal density nmax and repulse them
from the other regions with minimal density nmin [Fig. 7(b)].
The most intriguing situation can appear in the point of the wall
chiral-achiral phase transition, i.e., at rotation angles around
the critical ones αcr. The chiral-achiral phase transition can be
revealed by local c-AFM measurements of the cylindrical walls
since c-AFM contrast is regarded proportional to the relative
electron density n(x̃1)/n0.54 Figure 8 illustrates the rotation
anisotropy of the relative density n(x̃1)/n0. Exactly two sharp
maxima on nmax and breaks nmin on Fig. 8 corresponds
to the chiral-achiral phase transitions occurring at αm

cr ≈
π/6 ± π/12 + mπ/3. Without flexoelectric coupling there is
no c-AFM contrast for the angles α = mπ/3 corresponding
to the absence of the component P̃1 [see Figs. 8(a) and
2(d)]. Flexoelectric coupling leads to nonzero perpendicular
component P̃1 for all α and thus to nonzero contrast; also
it slightly shifts the critical angles and create the symmetric
potential structure well-barrier-well around rotation angle
π/3 [see Figs. 8(b) and 6(a)]. Results shown in Fig. 8 for
rhombohedral BTO look principally different from the ones
presented in Ref. 59 for rhombohedral BiFeO3. This difference
may be explained because in BiFeO3 the domain walls are
only of achiral type, and the coupling between P̃1 and P̃2

components is not so strong.
Strong asymmetry in the electron density distributions in

the α regions π/6 ± π/12 and π/2 ± π/12 originated from
the fact that DWs have mainly tail-to-tail structure (← | →)
with respect to P̃1 at π/6 ± π/12, and head-to-head structure
(→ | ←) at π/2 ± π/12.

The potential barrier (or well) ϕ(x̃1) and electron density
n(x̃1) profiles calculated for different wall orientations are
shown in Fig. 9. The walls oriented near αcr corresponding
to chiral-achiral phase transition have maximal electron
accumulation, because polarization component P̃1 is maximal
there [see Fig. 6(a)]. One can see from Fig. 9(b) that maximal
electron density n(x̃1) is about four times higher than the
electron density n0 in the single-domain region of BTO. This
means that the wall relative conductivity at the wall becomes
at least several times higher than in the single-domain region,
i.e., the ratio σmax/σ (±∞) � 1. Such contrast is pronounced
and thus can be easily detected by c-AFM.
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FIG. 9. (Color online) (a) Profiles of potential ϕ(x̃1) and (b)
relative electron density n(x̃1)/n0 calculated across the DW for
rotation angles α = π/3,2π/5,π/2 (specified near the curves), BTO
at temperature 180 K, flexoelectric coefficients F11 = 2.46, F12 =
0.48, F44 = 0.05 in 10−11 m3/C. Solid curves in plot (a) correspond
to full-scale calculations with account of semiconducting properties:
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Temperature dependence of the c-AFM contrast of chiral
walls, calculated as relative carrier density nmax(x̃1)/n0 is
shown in Fig. 10(a). In the Boltzmann approximation the
contrast exponentially increases with the temperature decrease
since n ≈ n0(T ) exp(eϕ/kBT ). At temperatures lower than
50 K the wall c-AFM contrast between the wall and the
single-domain region becomes more than 10 times even for
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FIG. 10. (Color online) (a) Temperature dependence of the
maximal c-AFM contrast σmax/σ0; (b) potential jump ϕmax; and
components (c) P̃2 and (d) P̃1 at DW in rhombohedral BTO calculated
for different rotation angles α = π/2,π/3,0.39π specified near the
curves. Note that the angles α = π/3 and α = π/2 correspond to the
DW with minimal and maximal energy, and one can see that even in
the limiting cases the DWs are more conductive than the bulk. Gray
rectangles indicate the region of orthorhombic and rhombohedral
phases coexistence.

the case of the most weakly conducting walls corresponding
to rotation angles α = π/3 + 2mπ/3. The angle α = π/3
corresponds to the DW with minimal energy. For other rotation
angles (e.g., for α = 0.39π,π/2) the c-AFM contrast can
be 50 − 500 times higher than the single-domain one. The
angle α = π/2 corresponds to the DW with maximal energy.
Note that the concentration n0 strongly decreases with tem-
perature decrease as shown in Fig. S4.38

Hence we suggest that the phase transition in the wall
structure can be detected by the jump on the c-AFM contrast
temperature dependence. Such a jump takes place for example
at T ∗

cr ≈ 105 K for the angle α∗
cr = 0.39π , which exactly

corresponds to the abrupt phase transition in the wall structure,
which is slightly shifted from the value αcr = 5π/12 by the
flexoelectric effect. Strong correlation between the c-AFM
contrast [Fig. 10(a)], maximal potential at the wall ϕmax(x̃1)
[Fig. 10(b)], amplitudes of P̃2 [Fig. 10(c)], and P̃1 [Fig. 10(d)]
can be predicted from our study. Thus we hope that our calcula-
tions can stimulate further experimental c-AFM studies of the
wall conduction in BTO, other ferroelectrics, and multiferroics
in a wide temperature range since the studies can give insight
to the wall polar structure and conductivity correlations, as
well as quantitative information of the flexoelectric coupling
strength.

V. SUMMARY

The structure, energetics, and electronic phenomena on the
180-degree domain wall in rhombohedral BTO are investi-
gated as functions of wall orientation. It is shown that there are
six energetically favorable wall orientations corresponding to
{110} planes, while {211} orientations correspond to energy
maxima. The minima are always degenerated, the flexoelectric
effect can shift the degeneracy of the maxima, splitting them
into two triplets. This is consistent with the presence of a
mirror plane at {110} and its absence at {211}. Another impact
of the flexoelectric effect is that the polarization component
perpendicular to the domain wall plane is nonzero for any
wall orientation (0 for {110} wall in its absence). Thus the
flexoelectric effect reveals the true symmetry of the problem.

Domain walls are shown to be of mixed Ising-Bloch-Néel
type for all orientations. Although the domain walls with {211}
and {110} orientations are shown to have sufficiently different
structures, achiral and chiral, the phase transition from achiral
to chiral state can be achieved either by varying the wall
orientation at fixed temperature or by temperature change at
constant orientation. We further predict the existence of 1D
defects similar to the cross-tie defects in the ferromagnetic
Bloch domain walls as a consequence of such transition.

We further analyze electronic properties of such walls
and suggest detecting the structural phase change inside the
domain walls by c-AFM contrast due to the correlation of the
domain wall structure and free charge accumulation, driven
by the depolarizing field. Depending on the temperature and
orientation, the conductivity of the wall may be one or even two
orders of magnitude higher than in the single-domain region.
Achiral-chiral phase transition in the wall is accompanied
with rapid change of the wall c-AFM contrast. In this context
c-AFM appears to be a promising tool for the detection of
structural phase transitions inside domain walls.
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