1,316 research outputs found

    Efficient Method for Quantum Number Projection and Its Application to Tetrahedral Nuclear States

    Full text link
    We have developed an efficient method for quantum number projection from most general HFB type mean-field states, where all the symmetries like axial symmetry, number conservation, parity and time-reversal invariance are broken. Applying the method, we have microscopically calculated, for the first time, the energy spectra based on the exotic tetrahedral deformation in 108,110^{108,110}Zr. The nice low-lying rotational spectra, which have all characteristic features of the molecular tetrahedral rotor, are obtained for large tetrahedral deformation, \alpha_{32} \gtsim 0.25, while the spectra are of transitional nature between vibrational and rotational with rather high excitation energies for α320.10.2\alpha_{32}\approx 0.1-0.2Comment: Trivial mistakes are correcte

    Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges

    Full text link
    We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM data reveal that the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures coexist over a length scale of 3-4 nm from both the edges. By comparing with density-functional derived nonorthogonal tight-binding calculations, we show that the coexistence is due to a slight admixing of the two types of edges at the graphite surfaces. In the STS measurements, a clear peak in the LDOS at negative bias voltages from -100 to -20 mV was observed near the zigzag edges, while such a peak was not observed near the armchair edges. We concluded that this peak corresponds to the graphite "edge state" theoretically predicted by Fujita \textit{et al.} [J. Phys. Soc. Jpn. {\bf 65}, 1920 (1996)] with a tight-binding model for graphene ribbons. The existence of the edge state only at the zigzag type edge was also confirmed by our first-principles calculations with different edge terminations.Comment: 20 pages, 11 figure

    Possible Jurassic age for part of Rakaia Terrane: implications for tectonic development of the Torlesse accretionary prism

    Get PDF
    Greywacke sandstone and argillite beds comprising Rakaia Terrane (Torlesse Complex) in mid Canterbury, South Island, New Zealand, are widely regarded as Late Triassic (Norian) in age based on the occurrence of Torlessia trace fossils, Monotis, and other taxa. This paleontological age assignment is tested using published 40Ar/39Ar mica and U-Pb zircon ages for these rocks and published and new zircon fission track (FT) ages. The youngest U-Pb zircon ages in the Rakaia Terrane rocks in mid Canterbury are Norian, whereas 10-20% of the 40Ar/39Ar muscovite ages are younger than Norian. Numerical modelling of these mica ages shows that they cannot have originated from partial thermal overprinting in the Torlesse prism if the thermal maximum was short-lived and early in the prism history (210-190 Ma), as commonly inferred for these rocks. The young component of mica ages could, however, be explained by extended residence (200-100 Ma) at 265-290deg.C in the prism. Early Jurassic (c. 189 Ma) zircon FT ages for sandstone beds from Arthur's Pass, the Rakaia valley, and the Hermitage (Mt Cook) are interpreted not to have experienced maximum temperatures above 210deg.C, and therefore cannot have been reduced as a result of partial annealing in the Torlesse prism. This is based on identification of a fossil Cretaceous, zircon FT, partial annealing zone in low-grade schists to the west, and the characteristics of the age data. The Early Jurassic zircon FT ages and the young component of 40Ar/39Ar mica ages are regarded therefore as detrital ages reflecting cooling in the source area, and constrain the maximum depositional age of parts of the Rakaia Terrane in mid Canterbury. The zircon FT data also show the initiation (c. 100 Ma) of marked and widespread Late Cretaceous cooling of Rakaia Terrane throughout Canterbury, which is attributed to uplift and erosion of inboard parts of the Torlesse prism due to continuing subduction accretion at its toe. The critical wedge concept is proposed as a new framework for investigating the development of the Torlesse Complex. The Rakaia Terrane may have formed the core of an accretionary wedge imbricated against the New Zealand margin during the Middle or Late Jurassic. Late Jurassic nonmarine sediments (e.g., Clent Hills Formation) accumulated upon the inner parts of the prism as it enlarged, emerged, and continued to be imbricated. Exhumation of Otago Schist from c. 135 Ma may mark the development of a balance (steady state) between sediments entering the prism at the toe and material exiting at the inboard margin. The enlargement of the area of exhumation to all of Canterbury from c. 100 Ma may reflect a dynamic response to widening of the prism through the accretion of Cretaceous sediments. The model of a dynamic critical wedge may help to explain the various expressions of the Rangitata Orogeny

    Water concentration in self-etching primers affects their aggressiveness and bonding efficacy to dentin

    Get PDF
    Water is required to ionize acid resin monomers for demineralization of tooth substrates. We tested the null hypothesis that altering the water concentration in two-step self-etching primers has no effect on their aggressiveness and bonding efficacy to dentin. Five experimental self-etching primers were prepared with resin-water-ethanol volume ratios of 9-0-1, 8-1-1, 7-2-1, 5-4-1, and 3-6-1. They were applied to smear-layer-covered dentin, followed by a bonding resin and composite build-ups for microtensile bond testing and TEM examination of tracer penetration. Increasing water concentration from 0-60 vol% improved acidic monomer ionization that was manifested as increasing hybrid layer thickness. However, significantly higher bond strength was observed in the 7-2-1 group, with minimal nanoleakage in the corresponding hybrid layer. When self-etching primers are formulated, a balance must be achieved to provide sufficient water for adequate ionization of the acidic monomers, without lowering the resin concentration too much, to optimize their bonding efficacy to dentin.published_or_final_versio

    The time-dependent transfer factor of radiocesium from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident

    Get PDF
    Since the Fukushima Dai-ichi accident, monitoring of tissues from hunted game animals ensures compliance with the standard food limits for radionuclides in Japan. We quantified the transfer of 137Cs from contaminated land to game animals using the Aggregated transfer factor (Tag = activity concentration in meat [Bq kg–1 fw]/amount in soil [Bq m–2]) of 137Cs for Asian black bear, wild boar, sika deer, green pheasant, copper pheasant and wild duck, collected between 2011 and 2015. Open data sources were used from Fukushima, Miyagi, Ibaraki, Tochigi, and Gunma prefectures. Our initially compiled data showed that the maximum reported 137Cs activity concentration in wild boar after the Fukushima Dai-ichi accident were lower than those reported after the Chernobyl accident. The geometric mean Tag values (m2kg–1 fw) of 137Cs in 2015 for Asian black bear, wild boar, sika deer and copper pheasant were similar (1.9–5.1) × 10–3 while those for green pheasant and wild duck were about 1 order of magnitude lower at (1.0–2.2) × 10–4. Effective half-lives were 1.2–6.9 y except for sika deer and copper pheasant where no decreases were found. In contrast to the Chernobyl accident, no seasonal change occurred in the meat 137Cs activity concentrations of the wild animals during the study period

    A mesoscopic ring as a XNOR gate: An exact result

    Full text link
    We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux ϕ\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of ϕ\phi (=ϕ0/2=\phi_0/2) (ϕ0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
    corecore