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Abstract It has been recognized that carbon-14 (14C) is one of the dominant

radionuclides affecting dose from transuranic (TRU) wastes. This radionuclide

has a decay half-life of 5,730 years, and 14C organic materials have very low

sorption properties to clay and rock in the environment, which raises some concerns

about the releases of 14C to the biosphere from radioactive waste repositories. For

the safety assessment of TRU waste disposal, we studied the behavior of 14C in rice

paddy field soils. We also determined key parameters such as soil–soil solution

distribution coefficients (Kds) and soil-to-rice plant transfer factors (TFs) of 14C in

the field soils. The TFs were obtained in laboratory and field experiments. In our

laboratory experiments, we used [1,2-14C] sodium acetate as a source of 14C

because it has been suggested that low molecular weight organic-14C compounds

are released from metallic TRU wastes. The results showed that 14C-bearing

sodium acetate in irrigated paddy soils was rapidly decomposed by indigenous

bacteria. Although some of the 14C was assimilated into the bacterial cells, most of

the 14C was released into the air as gaseous compounds. The main chemical species

of 14C gases was 14CO2, and a part of the released
14CO2 gas was used by rice plants

during photosynthesis. Only a negligible amount of 14C was absorbed through the

roots. Therefore, the contamination of rice plants is mainly caused by gasification of
14C, and microorganisms are responsible for driving this process. The activity of

microorganisms is a key issue in the behavior of 14C in paddy fields.
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26.1 Introduction

Transuranic (TRU) wastes contain a variety of radionuclides, for example, Np, Pu,

and long-lived radionuclides such as 14C and 129I. In Japan these wastes are

categorized into four groups in accordance with their physical properties and the
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concentration of radioactive materials. Group two waste includes hull and end piece

wastes with relatively high amounts of 14C, and leaching of low molecular weight
14C organic materials from simulated hull wastes has been reported [1]. The 14C

organic materials have very few sorption properties to clay and rock, and 14C has a

relatively long half-life of 5,730 years. These properties raise concerns about

releases of 14C to the biosphere from radioactive waste repositories.

Rice is a major agricultural crop throughout Asia, and thus human exposure to
14C through rice intake must be considered. To reduce the risk of the internal

radiation dose from 14C, it is important to clarify the behavior of 14C in rice

paddy fields. In this study, we determined transfer pathways of 14C through the

rice paddy fields to rice grains. Environmental parameters such as soil–soil solution

distribution coefficients (Kds) and soil-to-rice plant transfer factors (TFs) of 14C

were also determined, because these parameters are often used in transfer models to

predict the behavior of radionuclides in the environment. From a series of our

experimental results, we describe the behavior of 14C in rice paddy field soils and

the importance of microbial activity.

26.2 Partitioning of 14C into Solid, Liquid, and Gas Phases

We carried out batch sorption experiments using 63 Japanese rice paddy soil

samples to clarify the transfer pathways of 14C in rice paddy fields. The soil samples

were collected throughout Japan and taken to our laboratory where they were air

dried and sieved (<2 mm). These sieved soils were mixed with a [1,2-14C] sodium

acetate solution at the ratio of soil : solution¼ 0.5 g : 5 ml, and the flooded soil

samples were incubated at 25 �C for 7 days [2]. During the incubation period, the
14C atoms of the sodium acetate were partitioned into solid, liquid, and gas phases.

Each partitioning ratio is shown in Fig. 26.1. Approximately 63 % of the total 14C

on average was released into the air as gaseous compounds. Partitioning ratios into

solid and liquid phases were 34 % and 3 %, respectively. These results suggest that

gasification is an important pathway in the environmental transfer of 14C in

Japanese rice paddy fields.

When 14C is released into the air, 14C-bearing gases must pass through the soil

solution. Because soil solution pH affects chemical reactions such as hydrolysis and

degassing of CO2, chemical forms of 14C-bearing gases may change in the soil

solution. We, therefore, investigated relationships between pH and partitioning

ratios of 14C into the liquid phase at day 7 of incubation (Fig. 26.2). The partitioning

ratio increased with increasing in pH, and a significant correlation (r¼ 0.7) was

found. These data fit well with the solubility curve of total carbonic acid in water,

which refers to the sum of dissolved carbon dioxide and the carbonic acid. This

observation suggested that the dominant chemical species of 14C in gas forms was

carbon dioxide. To confirm the effect of pH on the partitioning of 14C into the liquid

phase, a soil sample was suspended in MES [2-(N-morpholino)ethanesulfonic acid]

buffers with the initial pH value adjusted to 5.5, 6.5, and 7.5 (Fig. 26.3). A control
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sample was prepared consisting of the soil and deionized water (pH unadjusted).

The partitioning ratio also increased with increasing pH, suggesting that the

partitioning ratio of 14C into the liquid phase depended on the pH of the soil

solution.

Soil–soil solution distribution coefficient (Kd) is a commonly used parameter to

evaluate behaviors of radionuclides in the environment. In our study, the Kd values

were calculated from activities of the 14C in the solid and liquid phases at the end of

incubation, and the obtained Kd value was 139� 77 ml g�1 on average. Negatively

charged anions generally have low Kd values because of simple electrostatic

interaction. Our value, however, was higher than expected from the chemical

form of 14CH3
14COO�. For example, Kaneko et al. [1] obtained the Kd value of

9.5 ml g�1 for the sorption test of acetic acid using cement materials. The reason for

our high Kd value is explained next.

26.3 Involvement of Microorganisms in the 14C Behavior

Many microorganisms inhabit rice paddy fields, and they are responsible for

nutrient cycling. We studied the involvement of microorganisms in environmental

transfer of 14C. Microorganisms in batch cultures were treated with autoclaving

(121 �C, 15 min), mixing with glutaraldehyde [final concentration of 2.5 %

(vol/vol)], and mixing with cycloheximide (final concentration, 250 μg ml�1).

Autoclaving and expose to glutaraldehyde inactivate bacteria and fungi, but expo-

sure to cycloheximide only inhibits fungi. The partitioning ratios of 14C into solid,

liquid, and gas phases for each treatment sample are listed in Table 26.1. When

microorganisms were treated by autoclaving and exposing to glutaraldehyde,

almost all the 14C added remained in the liquid phase; that is, negligible transfor-

mation of 14C occurred. On the other hand, the 14C atoms in the control and the

cycloheximide-treated sample were partitioned into solid, liquid, and gas phases at

certain ratios, and these ratios were similar between the control and the cyclohex-

imide samples. We confirmed fungi made no contribution to partitioning of 14C

Fig. 26.1 Box plots for

each partitioning ratio of
14C into solid, liquid, and

gas phases
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based on these results. We concluded that environmental transfer of 14C in rice

paddy fields was driven by bacteria, not by fungi.

To confirm incorporation of 14C into bacteria cells, bacteria that were isolated

from a flooding water of a paddy soil sample were cultivated on agar plates

containing [1,2-14C] sodium acetate [3]. After cultivation, bacterial colonies were

formed, and their autoradiography images showed that all colonies had the ability to

take up 14C (Fig. 26.4). In our experimental procedure, bacterial cells were conse-

quently partitioned into the solid phase, and thus the solid phase contains the 14C

incorporated by bacteria, which could be one of the reasons for the relatively high

Kd values.

26.4 Transfer of 14C from Soil to Rice Plants

Soil-to-rice plant transfer factors (TFs) of 14C, which was defined as 14C concen-

tration in rice grains (Bq/kg-dry) divided by that in soil (Bq/kg-dry), were deter-

mined by laboratory and field experiments. In the laboratory experiment using a

Fig. 26.2 Relationships

between pH and

partitioning ratios of 14C

into the liquid phase (scatter

plots). Solid line shows the
solubility curve of total

carbonic acid in water

Fig. 26.3 Effect of pH on

the partitioning of 14C into

the liquid phase
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growth chamber, we grew rice plants with addition of [1,2-14C] sodium acetate.

This 14C compound was supplied once to rice plants in the flooding water just

before blooming, and TF of 6.8� 2.4 on average was obtained. In these tracer

experiments, rice plants were also cultivated without [1,2-14C] sodium acetate as

negative controls in the same growth chamber as the 14C-treated rice. Interestingly
14C was detected even from the rice grains of negative control samples. These

results suggested that the 14C-bearing gas, which was released from bacterial cells

in rice paddy soils, was fixed by the rice plants in the negative controls through

photosynthesis.

We also examined the possibility of root uptake of 14C by stable isotope

techniques under field conditions [4]. If plant carbon originates from the atmo-

spheric CO2, the δ13C values in crops can be calculated using the δ13C value,�8‰
in air [5], and the 13C fractionation ratio in photosynthesis by rice plants of �18 to

�20‰ [6, 7]. The calculated δ13C values in our study ranged from �28‰ to

�26‰, and the results implied that no soil carbon contribution occurred for white

rice; however, by setting some conditions, for example, 13C fractionation ratio of

19‰, we obtained the average TF value of 0.11� 0.04 for white rice. To compare

these TF values obtained in laboratory and field experiments, it is necessary to pay

attention to the difference between [1,2-14C] sodium acetate and the actual organic

compounds present in the natural soil.

Table 26.1 The partitioning ratios of 14C into solid, liquid, and gas phases for each treatment.

Treatment

Partitioning ratio (%)

Solid phase Liquid phase Gas phase

Control 27.9 4.5 67.5

Autoclaving 0 98.0 2.0

Glutaraldehyde exposure 0 96.8 3.2

Cycloheximide exposure 29.3 4.8 65.9

a b

Fig. 26.4 Colonies of bacteria (a) and their autoradiography image (b). Heterotrophic bacteria

have the ability to uptake 14C from an agar medium
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26.5 Behavior of 14C in Rice Paddy Fields

From the aforementioned results, the behavior of 14C in rice paddy fields could be

considered as follows (a conceptual diagram appears in Fig. 26.5). When irrigation

water is contaminated by 14C-bearing sodium acetate, the 14C compound is taken up

and metabolized by indigenous bacteria. A part of the 14C is assimilated by the

bacterial cells, and the rest of the 14C is released as gaseous compounds from the

cells as a result of dissimilation. The dominant chemical species of 14C in gas forms

is carbon dioxide, and thus some of the released 14CO2 is dissolved in soil solution

depending on pH. For example, when the pH of the soil solution is less than 6.5,

most of 14C in gas forms is released into the air. The released 14CO2 is eventually

taken up by rice plants during photosynthesis. When the pH of the soil solution is

between 6.5 and 10.5, 14C-bearing bicarbonate ion dominates in the soil solution. In

addition, once 14CO2 has been released into the air, a part of the 14CO2 gas may be

redissolved in the soil solution again as bicarbonate ion. When the pH of the soil

solution is greater than 10.5, although this is not probable in paddy fields, 14C-

bearing carbonate ion dominates in the soil solution. Carbonate ion is thermally

unstable and thus precipitates as carbonate minerals such as CaCO3. In these

alkaline situations, the ratio of 14C in the solid phase may increase as a result of

the precipitation of 14C. Because the root uptake of 14C by rice plants is negligible,

gasification of 14C is an important environmental transfer pathway for the safety

assessment of TRU wastes, and bacteria are responsible for driving this pathway.
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Fig. 26.5 A conceptual diagram for the behavior of 14C in rice paddy fields
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