81 research outputs found
Transport, magnetic and superconducting properties of RuSr2RCu2O8 (R= Eu, Gd) doped with Sn
Ru{1-x}Sn{x}Sr2EuCu2O8 and Ru{1-x}Sn{x}Sr2GdCu2O8 have been comprehensively
studied by microwave and dc resistivity and magnetoresistivity and by the dc
Hall measurements. The magnetic ordering temperature T_m is considerably
reduced with increasing Sn content. However, doping with Sn leads to only
slight reduction of the superconducting critical temperature T_c accompanied
with the increase of the upper critical field B_c2, indicating an increased
disorder in the system and a reduced scattering length of the conducting holes
in CuO2 layers. In spite of the increased scattering rate, the normal state
resistivity and the Hall resistivity are reduced with respect to the pure
compound, due to the increased number of itinerant holes in CuO2 layers, which
represent the main conductivity channel. Most of the electrons in RuO2 layers
are presumably localized, but the observed negative magnetoresistance and the
extraordinary Hall effect lead to the conclusion that there exists a small
number of itinerant electrons in RuO layers that exhibit colossal
magnetoresistance.Comment: 10 pages, 9 figure
Co-doped (La,Sr)TiO3-d: a high-Curie temperature diluted magnetic system with large spin-polarization
We report on tunneling magnetoresistance (TMR) experiments that demonstrate
the existence of a significant spin polarization in Co-doped (La,Sr)TiO3-d
(Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie
temperature. These TMR experiments have been performed on magnetic tunnel
junctions associating Co-LSTO and Co electrodes. Extensive structural analysis
of Co-LSTO combining high-resolution transmission electron microscopy and Auger
electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer
and thus, the measured ferromagnetism and high spin polarization are intrinsic
properties of this DMOS. Our results argue for the DMOS approach with complex
oxide materials in spintronics
Anisotropic charge dynamics in the quantum spin-liquid candidate -(BEDT-TTF)Cu(CN)
We have in detail characterized the anisotropic charge response of the dimer
Mott insulator -(BEDT-TTF)\-Cu(CN) by dc conductivity, Hall
effect and dielectric spectroscopy. At room temperature the Hall coefficient is
positive and close to the value expected from stoichiometry; the temperature
behavior follows the dc resistivity . Within the planes the dc
conductivity is well described by variable-range hopping in two dimensions;
this model, however, fails for the out-of-plane direction. An unusually broad
in-plane dielectric relaxation is detected below about 60 K; it slows down much
faster than the dc conductivity following an Arrhenius law. At around 17 K we
can identify a pronounced dielectric anomaly concomitantly with anomalous
features in the mean relaxation time and spectral broadening. The out-of-plane
relaxation, on the other hand, shows a much weaker dielectric anomaly; it
closely follows the temperature behavior of the respective dc resistivity. At
lower temperatures, the dielectric constant becomes smaller both within and
perpendicular to the planes; also the relaxation levels off. The observed
behavior bears features of relaxor-like ferroelectricity. Because
heterogeneities impede its long-range development, only a weak tunneling-like
dynamics persists at low temperatures. We suggest that the random potential and
domain structure gradually emerge due to the coupling to the anion network.Comment: 14 pages, 13 figure
Full oxide heterostructure combining a high-Tc diluted ferromagnet with a high-mobility conductor
We report on the growth of heterostructures composed of layers of the
high-Curie temperature ferromagnet Co-doped (La,Sr)TiO3 (Co-LSTO) with
high-mobility SrTiO3 (STO) substrates processed at low oxygen pressure. While
perpendicular spin-dependent transport measurements in STO//Co-LSTO/LAO/Co
tunnel junctions demonstrate the existence of a large spin polarization in
Co-LSTO, planar magnetotransport experiments on STO//Co-LSTO samples evidence
electronic mobilities as high as 10000 cm2/Vs at T = 10 K. At high enough
applied fields and low enough temperatures (H < 60 kOe, T < 4 K) Shubnikov-de
Haas oscillations are also observed. We present an extensive analysis of these
quantum oscillations and relate them with the electronic properties of STO, for
which we find large scattering rates up to ~ 10 ps. Thus, this work opens up
the possibility to inject a spin-polarized current from a high-Curie
temperature diluted oxide into an isostructural system with high-mobility and a
large spin diffusion length.Comment: to appear in Phys. Rev.
Magnetotransport of lanthanum doped RuSr2GdCu2O8 - the role of gadolinium
Strongly underdoped RuSr_1.9La_0.1GdCu_2O_8 has been comprehensively studied
by dc magnetization, microwave measurements, magnetoresistivity and Hall
resistivity in fields up to 9 T and temperatures down to 1.75 K. Electron
doping by La reduces the hole concentration in the CuO2 planes and completely
suppresses superconductivity. Microwave absorption, dc resistivity and ordinary
Hall effect data indicate that the carrier concentration is reduced and a
semiconductor-like temperature dependence is observed. Two magnetic ordering
transitions are observed. The ruthenium sublattice orders antiferromagnetically
at 155 K for low applied magnetic field and the gadolinium sublattice
antiferromagnetically orders at 2.8 K. The magnetoresistivity exhibits a
complicated temperature dependence due to the combination of the two magnetic
orderings and spin fluctuations. It is shown that the ruthenium magnetism
influences the conductivity in the RuO2 layers while the gadolinium magnetism
influences the conductivity in the CuO2 layers. The magnetoresistivity is
isotropic above 4 K, but it becomes anisotropic when gadolinium orders
antiferromagnetically.Comment: 7 pages, 9 figures, submitted to European Physical Journal
High Mobility in LaAlO_3/SrTiO_3 Heterostructures: Origin, Dimensionality, and Perspectives
We have investigated the dimensionality and origin of the magnetotransport properties of LaAlO3 films epitaxially grown on TiO2-terminated SrTiO3(001) substrates. High-mobility conduction is observed at low deposition oxygen pressures (PO2<10-5 mbar) and has a three-dimensional character. However, at higher PO2 the conduction is dramatically suppressed and nonmetallic behavior appears. Experimental data strongly support an interpretation of these properties based on the creation of oxygen vacancies in the SrTiO3 substrates during the growth of the LaAlO3 layer. When grown on SrTiO3 substrates at low PO2, other oxides generate the same high mobility as LaAlO3 films. This opens interesting prospects for all-oxide electronics
Influence of doping on the Hall coefficient in Sr_{14-x}Ca_xCu_24O_41
We present Hall-effect measurements of two-leg ladder compounds
Sr_{14-x}Ca_xCu_24O_41 (0 <= x <= 11.5) with the aim to determine the number of
carriers participating in dc transport. Distribution of holes between the
ladder and chain subsystems is one of the crucial questions important for
understanding the physics of these compounds. Our Hall effect and resistivity
measurements show typical semiconducting behavior for x < 11.5. However, for
x=11.5, the results are completely different, and the Hall coefficient and
resistivity behavior is qualitatively similar to that of high temperature
copper-oxide superconductors. We have determined the effective number of
carriers at room temperature and compared it to the number of holes in the
ladders obtained by other experimental techniques. We propose that going from
x=0 to x=11.5 less than 1 hole per formula unit is added to the ladders and is
responsible for a pronounced change in resistivity with Ca doping.Comment: 8 pages, 7 figures, revised versio
Point defect distribution in high-mobility conductive SrTiO3 crystals
We have carried out positron annihilation spectroscopy to characterize the spatial distribution and the nature of vacancy defects in insulating as-received as well as in reduced SrTiO3 substrates exhibiting high-mobility conduction. The substrates were reduced either by ion etching the substrate surfaces or by doping with vacancies during thin film deposition at low pressure and high temperature. We show that Ti-vacancies are native defects homogeneously distributed in as-received substrates. In contrast, the dominant vacancy defects are the same both in ion-etched and substrates reduced during the film growth, and they consist of non-homogeneous distributions of cation-oxygen vacancy complexes. Their spatial extension is tuned from a few microns in ion-etched samples to the whole substrate in specimens reduced during film deposition. Our results shed light on the transport mechanisms of conductive SrTiO3 crystals and on strategies for defect-engineered oxide quantum wells, wires and dots
- …