9 research outputs found

    Forging 'Soft' Accountability in Unlikely Settings: A Conceptual Analysis of Mutual Accountability in the Context of South-South Cooperation

    Get PDF
    This study sets out to introduce the concept of soft accountability as a new approach to understanding mutual accountability in unlikely settings of development cooperation through South-South cooperation. In doing so, this study analyzes three defining components of accountability (responsibility, answerability, and enforceability) and identifies the actors and modalities of mutual accountability in four different situations of South-South cooperation mechanisms. The main finding in this conceptual analysis contains establishing an institutional and sustainable development platform for the mutual accountability of South-South cooperation by not only reflecting the distinctive nature of South-South cooperation, but also focusing on responsibility first to reduce buck-passing among actors and to sustain its continuous management

    Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice

    Get PDF
    Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are available on the potential metabolic effects of GDF11 or GDF8 in aging. To determine the metabolic effects of these two ligands, we administered rGDF11 or rGDF8 protein to young or aged mice fed a standard chow diet, short-term high-fat diet (HFD), or long-term HFD. Under nearly all of these diet conditions, administration of exogenous rGDF11 reduced body weight by 3-17% and significantly improved glucose tolerance in aged mice fed a chow (~30% vs. saline) or HF (~50% vs. saline) diet and young mice fed a HFD (~30%). On the other hand, exogenous rGDF8 showed signifcantly lesser effect or no effect at all on glucose tolerance compared to rGDF11, consistent with data demonstrating that GFD11 is a more potent signaling ligand than GDF8. Collectively, our results show that administration of exogenous rGDF11, but not rGDF8, can reduce diet-induced weight gain and improve metabolic homeostasis

    Nocturnal Activation of Melatonin Receptor Type 1 Signaling Modulates Diurnal Insulin Sensitivity via Regulation of Pi3k Activity

    Get PDF
    Recent genetic studies have highlighted the potential involvement of melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2) in the pathogenesis of type 2 diabetes. Here, we report that mice lacking MT1 (MT1 KO) tend to accumulate more fat mass than WT mice and exhibit marked systemic insulin resistance. Additional experiments revealed that the main insulin signaling pathway affected by the loss of MT1 was the activation of phosphatidylinositol-3-kinase (PI3K). Transcripts of both catalytic and regulatory subunits of PI3K were strongly downregulated within MT1 KO mice. Moreover, the suppression of nocturnal melatonin levels within WT mice, by exposing mice to constant light, resulted in impaired PI3K activity and insulin resistance during the day, similar to what was observed in MT1 KO mice. Inversely, administration of melatonin to WT mice exposed to constant light was sufficient and necessary to restore insulin-mediated PI3K activity and insulin sensitivity. Hence, our data demonstrate that the activation of MT1 signaling at night modulates insulin sensitivity during the day via the regulation of the PI3K transcription and activity. Lastly, we provide evidence that decreased expression of MTNR1A (MT1) in the liver of diabetic individuals is associated with poorly controlled diabetes
    corecore