1,053 research outputs found

    Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the effects of temperature and magnetic field on the electronic structure of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using optical spectroscopy. As the magnetic ordering of the system was disturbed, a systematic change in the electronic structure was commonly identified in this series. The optical absorption peak near 1.7 eV showed an unexpectedly large shift of more than 150 meV from 300 K to 15 K, accompanied by an anomaly of the shift at the Neel temperature. The magnetic field dependent measurement clearly revealed a sizable shift of the corresponding peak when a high magnetic field was applied. Our findings indicated strong coupling between the magnetic ordering and the electronic structure in the multiferroic hexagonal RMnO3 compounds.Comment: 16 pages including 4 figure

    Customized Energy Down-Shift using Iridium Complexes for Enhanced Performance of Polymer Solar Cells

    Get PDF
    School of Molecular Sciences(Chemistry)For the higher performance of polymer solar cells (PSCs), many researchers tried to develop new polymers that can absorb broader range of spectrum. However, there are some limits to absorb broader range with single donor. Therefore, multi donor systems and energy transfer systems have been researched. With two different donors it is easier to enhance absorption range. As a result, multi donor and energy transfer was successful to increase performance. However, the existing systems are applying polymer-polymer systems. When two different polymers are mixed, the compatibility between two polymers is critical to morphology of blend film. Also, in polymer-polymer energy transfer, the boundary between charge transfer and energy transfer is unclear. Therefore, for the first time, we developed customized iridium (Ir(III)) complexes, with Ir(III) complex incorporated into the active materials poly(thieno[3,4-b]-thiophene/benzodithiophene) (PTB7, amorphous) or poly(3-hexylthiophene) (P3HT, high crystalline) as energy donor additives. The Ir(III) complex with the 2-phenyl quinolone ligand energy donor increased the power conversion efficiency of the corresponding devices by approximately 20%. The enhancements are attributed to the improved molecular compatibility and energy level between the Ir(III) complex and the active materials, long F??rster resonance energy transfer radius, and high energy down-shift efficiency. Overall, we reveal Ir(III) complex additives for amorphous and highly crystalline polymer active materialsthese additives would enable efficient energy transfer in polymer solar cells, while retaining the desirable active layer morphology, thereby resulting in improved light absorption and conversion.ope

    Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid

    Analysis of Content Legibility for Smartphones of Websites of the Korean Urological Association and Other Urological Societies in Korea

    Get PDF
    Purpose: We performed an analysis of the smartphone legibility of the websites of the Korean Urological Association (KUA) and other urological societies. Materials and Methods: This study was conducted on the websites of the KUA and nine other urological societies. Each website was accessed via iPhone Safari and Android Chrome, respectively, to evaluate the establishment and readability of the mobile web pages. The provision of Really Simple Syndication (RSS) feeds by the websites and whether the websites had Twitter and Facebook accounts were evaluated. In addition, a validation test on the web standards was performed by using the World Wide Web Consortium (W3C???) Markup Validation Service, and subsequently the numbers of errors and warnings that occurred were analyzed. Results: When accessed via Safari, two websites were legible, four were somewhat legible, and four were somewhat illegible. When accessed via Chrome, two websites were legible, six were somewhat legible, and two were somewhat illegible. One website provided an RSS feed and two websites managed members via separate Twitter accounts. No website supported mobile web pages. The result of the W3C??? Markup Validation test on 10 websites showed a mean error rate of 221.6 (range, 13-1,477) and a mean warning rate of 127.13 (range, 0-655). Conclusions: The smartphone legibility level of the websites of urological societies was relatively low. Improved smartphone legibility and web standard compliance of the websites of urological societies are required to keep up with the popularity of smartphones

    Organic light emitting board for dynamic interactive display

    Get PDF
    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.
    corecore