109 research outputs found

    Numerical Study of the Intrinsic and Feedback Dynamics of a Gas-Solid Fluidized Bed

    Get PDF
    The aim of this paper is to understand the complex spatio-temporal patterning of the dense bed when the inlet conditions can be modified by the bed itself. In this study, the inlet conditions (fluid pressure and velocity upstream the bed) take into account resistive effects from the distributor and capacitive ones from the air-supply system (plenum). The present work addresses particularly the issue of the transition between multiple and single bubble regimes that occurs for some particular inlet conditions

    Sessile Drop in Microgravity: Creation, Contact Angle and Interface

    Get PDF
    We present in this paper the results obtained from a parabolic flight campaign regarding the contact angle and the drop interface behavior of sessile drops created under terrestrial gravity (1g) or in microgravity (mu g). This is a preliminary study before further investigations on sessile drops evaporation under microgravity. In this study, drops are created by the mean of a syringe pump by injection through the substrate. The created drops are recorded using a video camera to extract the drops contact angles. Three fluids have been used in this study : de-ionized water, HFE-7100 and FC-72 and two heating surfaces: aluminum and PTFE. The results obtained evidence the feasibility of sessile drop creation in microgravity even for low surface tension liquids (below 15 mN m (-aEuro parts per thousand 1)) such as FC-72 and HFE-7100. We also evidence the contact angle behavior depending of the drop diameter and the gravity level. A second objective of this study is to analyze the drop interface shape in microgravity. The goal of the these experiments is to obtain reference data on the sessile drop behavior in microgravity for future experiments to be performed in an French-Chinese scientific instrument (IMPACHT)

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene mutation is an important mechanism of myeloid leukemogenesis. However, the number and combination of gene mutated in myeloid malignancies is still a matter of investigation.</p> <p>Methods</p> <p>We searched for mutations in the <it>ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 </it>and <it>WT1 </it>genes in 65 myelodysplastic syndromes (MDSs) and 64 acute myeloid leukemias (AMLs) without balanced translocation or complex karyotype.</p> <p>Results</p> <p>Mutations in <it>ASXL1 </it>and <it>CBL </it>were frequent in refractory anemia with excess of blasts. Mutations in <it>TET2 </it>occurred with similar frequency in MDSs and AMLs and associated equally with either <it>ASXL1 </it>or <it>NPM1 </it>mutations. Mutations of <it>RUNX1 </it>were mutually exclusive with <it>TET2 </it>and combined with <it>ASXL1 </it>but not with <it>NPM1</it>. Mutations in <it>FLT3 (</it>mutation and internal tandem duplication), <it>IDH1</it>, <it>IDH2</it>, <it>NPM1 </it>and <it>WT1 </it>occurred primarily in AMLs.</p> <p>Conclusion</p> <p>Only 14% MDSs but half AMLs had at least two mutations in the genes studied. Based on the observed combinations and exclusions we classified the 12 genes into four classes and propose a highly speculative model that at least a mutation in one of each class is necessary for developing AML with simple or normal karyotype.</p

    A review on boiling heat transfer enhancement with nanofluids

    Get PDF
    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement

    3D micro-macro fluid-structure model of pressure relief valve leak tightness

    Get PDF
    Controlling and assessing the leak tightness of a Pressure Relief Valve (PRV) has been a challenge since the original design of the product. With more stringent demands from the nu- clear power industry for leakproof PRV’s, closer to the set point, there has been a drive by both industry and academia for a better design method for many known metal-to-metal contacting seal/surface problems. This paper outlines a numerical modelling strategy drawn from industry experience and metrology measurements and investigates the effects of lapping and surface finish on leakage rate. Key influencing parameters of surface form, waviness and roughness are incorporated in the analysis. The numerical approach requires efficient coupling of a non-linear structural Finite Element Analysis (FEA) with a Computational Fluid Dynamic (CFD) solver. This allows the examination of the relationship between deformation of the contacting surfaces, based on the applied spring force, and the resulting micro-flow of gas through any available gaps and the overall leakage to be found. The API527 Seat Tightness methodology is followed to allow leakage rates to be measured and the computational model to be preliminarily validated. Using this model, engineers can adjust and optimise the design of pressure relief valves to find the minimal leakage condition for a given configuration. In addition, the numerical approach can potentially be applied to other metal-to-metal contacting surface components, such as flanges with metal gaskets, and help eliminate leakage
    corecore