5 research outputs found

    The remote handling system of IFMIF-DONES

    No full text
    The International Fusion Materials Irradiation Facility-DEMO Oriented Neutron Source (IFMIF-DONES) consists of complex systems and massive components that need to be on site assembled and maintained. For several of them it is required to perform maintenance, inspection and monitoring tasks over many years in a hostile environment and in efficient, safe and reliable manner. The maintenance of IFMIF-DONES’ systems and components, located mainly in the Test Systems (TS), in the Lithium Systems (LS) and in the Accelerator Systems (AS), is classified as a Remote Handling (RH) Class 1st activity and as such is considered a crucial and essential activity whose success will strictly depend on the IFMIF-DONES RH capability. According to this, a Remote Handling System (RHS) for IFMIF-DONES, which comprises the whole set of Remote Handling Equipment and tooling for the execution of maintenance tasks, has been designed. A wide range of technologies is involved: special cranes, manipulator arms, lift interface frames, special cameras, control systems and virtual reality. In this paper an overview on status of the design of the main robotic systems and tooling of the RHS of IFMIF-DONES, including design requirements, functions and maintenance tasks to be performed, is given

    Challenges of Target and Irradiation Diagnostics of the IFMIF-DONES Facility

    No full text
    International audienceIFMIF-DONES will be a first-class scientific infrastructure consisting of an accelerator-driven neutron source delivering 1e17 n/s with a broad peak at 14 MeV. Such neutron flux will be created by impinging a continuous wave 125 mA, 40 MeV, 5 MW deuteron beam onto a liquid Li jet target, circulating at 15 m/s. Material specimens subjected to neutron irradiation will be placed a few millimeters downstream. Some of the most challenging technological aspects of the facility are the Diagnostics to monitor the Li jet, beam parameters on target, and characterization of the neutron irradiation field, with transversal implications in the scientific exploitation, machine protection and safety. Multiple solutions are foreseen, considering among others, Li jet thickness measurement methods based on optical metrology and millimeter-wave radar techniques, Li electromagnetic flowmeters, beam footprint measurements based on residual gas excitation, online neutron detectors such as SPNDs and micro-fission chambers, as well as offline neutron fluence measurements by activation foils or spheres. This contribution provides an overview of these aspects and the associated R&D activities
    corecore